Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 21 7765
prepared with standard cumene hydroperoxide. The values of
IC50 were obtained by least-squares analysis of the linear part of
the semilogarithmic plot of I (%, percentage of inhibition) vs
antioxidant concentration (0.860 < r2 < 0.988). The experi-
ment was performed in triplicate.
(17) Kador, P. F.; Goosey, J. D.; Sharpless, N. E.; Kolish, J.; Miller,
D. D. Stereospecific inhibition of aldose reductase EC-1.1.1.21.
Eur. J. Med. Chem. 1981, 16, 293–298.
(18) El-Kabbani, O.; Darmanin, C.; Oka, M.; Schulze-Briese, C.;
Tomizaki, T.; Hazemann, I.; Mitschler, A.; Podjarny, A. High-
resolution structures of human aldose reductase holoenzyme in
complex with stereoisomers of the potent inhibitor fidarestat:
stereospecific interaction between the enzyme and a cyclic imide
type inhibitor. J. Med. Chem. 2004, 47, 4530–4537.
(19) El-Kabbani, O.; Carbone, V.; Darmanin, C.; Oka, M.; Mitschler,
A.; Podjarny, A.; Schulze-Briese, C.; Chung, R. P. Structure of
aldehyde reductase holoenzyme in complex with the potent aldose
reductase inhibitor fidarestat: implications for inhibitor binding
and selectivity. J. Med. Chem. 2005, 48, 5536–5542.
(20) Kurono, M.; Fujiwara, I.; Yoshida, K. Stereospecific interaction of
a novel spirosuccinimide type aldose reductase inhibitor, AS-3201,
with aldose reductase. Biochemistry 2001, 40, 8216–8226.
(21) Negoro, T.; Murata, M.; Ueda, S.; Fujitani, B.; Ono, Y.;
Kuromiya, A.; Komiya, M.; Suzuki, K.; Matsumoto, J. Novel, highly
potent aldose reductase inhibitors: (R)-(-)-2-(4-bromo-2-fluoro-
benzyl)-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazine -4-spiro-30-pyrroli-
dine-1,20,3,50-tetrone (AS-3201) and its congeners. J. Med. Chem.
1998, 41, 4118–4129.
(22) Rakowitz, D.; Gmeiner, A.; Schroder, N.; Matuszczak, B. Syn-
thesis of novel phenylacetic acid derivatives with halogenated
benzyl subunit and evaluation as aldose reductase inhibitors.
Eur. J. Pharm. Sci. 2006, 27, 188–193.
(23) Kirk, K. L. Selective fluorination in drug design and development:
an overview of biochemical rationales. Curr. Top. Med. Chem.
2006, 6, 1447–1456.
(24) Duarte, C. D.; Barreiro, E. J.; Fraga, C. A. M. Privileged struc-
tures: a useful concept for the rational design of new lead drug
candidates. Mini-Rev. Med. Chem. 2007, 7, 1108–1119.
(25) El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A. Aldose and
aldehyde reductases: structure-function studies on the coenzyme
and inhibitor-binding sites. Mol. Vision 1999, 5, 20–26.
(26) El-Kabbani, O.; Podjarny, A. Selectivity determinants of the
aldose and aldehyde reductase inhibitor-binding sites. Cell. Mol.
Life Sci. 2007, 64, 1970–1978.
(27) Cappiello, M.; Voltarelli, M.; Cecconi, I.; Vilardo, P. G.; Dal
Monte, M.; Marini, I.; Del Corso, A.; Wilson, D. K.; Quiocho,
F. A.; Petrash, J. M.; Mura, U. Specifically targeted modification
of human aldose reductase by physiological disulfides. J. Biol.
Chem. 1996, 271, 33539–33544.
(28) Grimshaw, C. E.; Lai, C.-J. Oxidized aldose reductase: in vivo
factor, not in vitro artifact. Arch. Biochem. Biophys. 1996, 327, 89–97.
(29) Srivastava, S. K.; Ramana, K. V.; Bhatnagar, A. Role of aldose
reductase and oxidative damage in diabetes and the consequent
potential for therapeutic options. Endocr. Rev. 2005, 26, 380–392.
(30) Peet, N. P.; Sunder, S.; Barbuch, R. J.; Huber, E. W.; Bargar,
E. M. Sulfonylcarbamimidic azides from sulfonyl chlorides and
5-aminotetrazole. J. Heterocycl. Chem. 1987, 24, 1531–1535.
(31) Buckman, B. O.; Morrissey, M. M.; Mohan, R. Solution-phase
parallel synthesis of benzoxazines using a polymer-supported
carbodiimide. Tetrahedron Lett. 1998, 39, 1487–1488.
(32) Belousova, I. A.; Simanenko, Y. S.; Savelova, V. A.; Suprun, I. P.
Mechanism of catalysis with triethylamine of phenols benzoylation
in dioxane. New quality experiment. Russ. J. Org. Chem. 2000, 36,
1656–1664.
(33) DeRuiter, J.; Borne, R. F.; Mayfield, C. A. N- and 2-substituted
N-(phenylsulfonyl)glycines as inhibitors of rat lens aldose reduc-
tase. J. Med. Chem. 1989, 32, 145–151.
(34) Yasuhara, A.; Kameda, M.; Sakamoto, T. Selective monodesulfo-
nylation of N,N-disulfonylarylamines with tetrabutylammonium
fluoride. Chem. Pharm. Bull. 1999, 47, 809–812.
(35) Wittenberger, S. J.; Donner, B. G. Dialkyltin oxide-mediated
addition of trimethylsilyl azide to nitriles: a novel preparation of
5-substituted tetrazoles. J. Org. Chem. 1993, 58, 4139–4141.
(36) Malspeis, L.; Gold, D. Stability of cycloserine in buffered aqueous
solutions. J. Pharm. Sci. 1964, 53, 1173–1179.
Acknowledgment. This work was supported by grants
from the State Scholarships Foundation of Greece and the
Research Committee of Aristotle University of Thessaloniki,
Greece. Acknowledgments are made to Dr. Ioannis Nicolaou
and Dr. Dionysia Papagiannopoulou (School of Pharmacy,
Aristotle Universityof Thessaloniki) for their contributions in
obtaining the 1H HMR spectral data and to Professor Anna
Tsantili-Kakoulidou (School of Pharmacy, University of
Athens) for permission to use the Pallas program.
Supporting Information Available: Elemental analysis data of
all synthesized compounds and experimental and spectroscopic
details for nonkey compounds. This material is available free of
References
(1) Demopoulos, V. J.; Zaher, N.; Zika, C.; Anagnostou, C.; Mamadou,
E.; Alexiou, P.; Nicolaou, I. Compounds that combine aldose reduc-
tase inhibitory activity and ability to prevent the glycation (glucation
and/or fructation) of proteins as putative pharmacotherapeutic agents.
Drug Design Reviews Online 2005, 2, 293–304.
(2) Alexiou, P.; Pegklidou, K.; Chatzopoulou, M.; Nicolaou, I.;
Demopoulos, V. J. Aldose reductase enzyme and its implication
to major health problems of the 21(st) century. Curr. Med. Chem.
2009, 16, 734–752.
(3) Ramirez, M. A.; Borja, N. L. Epalrestat: an aldose reductase
inhibitor for the treatment of diabetic neuropathy. Pharmacother-
apy 2008, 28, 646–655.
(4) Schemmel, K. E.; Padiyara, R. S.; D’Souza, J. J. Aldose reductase
inhibitors in the treatment of diabetic peripheral neuropathy: a
review. J. Diabetes Complications 2010, 24, 354–360.
(5) Alexiou, P.; Nicolaou, I.; Stefek, M.; Kristl, A.; Demopoulos, V. J.
Design and synthesis of N-(3,5-difluoro-4-hydroxyphe-
nyl)benzenesulfonamides as aldose reductase inhibitors. Bioorg.
Med. Chem. 2008, 16, 3926–3932.
(6) Sturm, K.; Levstik, L.; Demopoulos, V. J.; Kristl, A. Permeability
characteristics of novel aldose reductase inhibitors using rat
jejunum in vitro. Eur. J. Pharm. Sci. 2006, 28, 128–133.
(7) Lima, L. M. A.; Barreiro, E. J. Bioisosterism: a useful strategy for
molecular modification and drug design. Curr. Med. Chem. 2005,
12, 23–49.
(8) Wagener, M.; Lommerse, J. P. M. The quest for bioisosteric
replacements. J. Chem. Inf. Model. 2006, 46, 677–685.
(9) Reitz, A. B.; Smith, G. R.; Parker, M. H. The role of sulfamide
derivatives in medicinal chemistry: a patent review (2006-2008).
Expert Opin. Ther. Pat. 2009, 19, 1449–1453.
(10) DeRuiter, J.; Brubaker, A. N.; Garner, M. A.; Barksdale, J. M.;
Mayfield, C. A. In vitro aldose reductase inhibitory activity of
substituted N-benzenesulfonylglycine derivatives. J. Pharm. Sci.
1987, 76, 149–152.
(11) DeRuiter, J.; Mayfield, C. A. Inhibitory activity and mechanism of
inhibition of the N-[[(4-benzoylamino)phenyl]sulfonyl]amino acid
aldose reductase inhibitors. Biochem. Pharmacol. 1990, 40, 2219–2226.
(12) Mayfield, C. A.; DeRuiter, J. Novel inhibitors of rat lens aldose
reductase: N-[[(substituted amino)phenyl]sulfonyl]glycines. J. Med.
Chem. 1987, 30, 1595–1598.
(13) Yuan, H.; Silverman, R. B. New substrates and inhibitors of
gamma-aminobutyric acid aminotransferase containing bioisos-
teres of the carboxylic acid group: design, synthesis, and biological
activity. Bioorg. Med. Chem. 2006, 14, 1331–1338.
(14) Qiu, J.; Stevenson, S. H.; O’Beirne, M. J.; Silverman, R. B.
2,6-Difluorophenol as a bioisostere of a carboxylic acid: bioisosteric
analogues of gamma-aminobutyric acid. J. Med. Chem. 1999, 42,
329–332.
(15) Nicolaou, L.; Zika, C.; Demopoulos, V. J. [1-(3,5-Difluoro-
4-hydroxyphenyl)-1H-pyrrol-3-yl]phenylmethanone as a bioisos-
tere of a carboxylic acid aldose reductase inhibitor. J. Med. Chem.
2004, 47, 2706–2709.
(37) Gui, T.; Tanimoto, T.; Kokai, Y.; Nishimura, C. Presence of a
closely related subgroup in the aldo-ketoreductase family of the
mouse. Eur. J. Biochem. 1995, 227, 448–453.
(38) Del Corso, A.; Costantino, L.; Rastelli, G.; Buono, F.; Mura, U.
Aldose reductase does catalyse the reduction of glyceraldehyde
through a stoichiometric oxidation of NADPH. Exp. Eye Res.
2000, 71, 515–521.
(39) Demopoulos, V. J.; Rekka, E. Isomeric benzoylpyrroleacetic acids:
some structural aspects for aldose reductase inhibitory and anti-
inflammatory activities. J. Pharm. Sci. 1995, 84, 79–82.
(16) Pallas, version 3.3.2.4; CompuDrug Chemistry Ltd.: Sedona, AZ, 1994
and 2006.
(40) Kador, P. F.; Sharpless, N. E. Pharmacophor requirements of the
aldose reductase inhibitor site. Mol. Pharmacol. 1983, 24, 521–531.