Table 3 Arylation of benzoxazoles with arylsulfonyl hydrazidesa
In summary, we have developed palladium-catalyzed desulfi-
tative–denitrogenative arylation of azoles with arylsulfonyl
hydrazides. Various oxazoles and arylsulfonylhydrazides can be
tolerated in this reaction to afford the desired products in good to
high yields. This method expands the utility of arylsulfonyl
hydrazides as arylating reagent in C–H activation of
heteroaromatics.
Financial support from the National Basic Research Program
of China (2010CB833300) and the National Natural Science
Foundation of China (21172218) and the Dalian Institute of
Chemical Physics, Chinese Academy of Science is acknowl-
edged. We thank Dr Jian Xiao for the initial preparation of this
manuscript.
Notes and references
1 For recent reviews of transition-metal-catalyzed direct C–H bond functio-
nalization, see: (a) L.-C. Campeau and K. Fagnou, Chem. Commun.,
2006, 1253; (b) O. Daugulis, V. G. Zaitsev, D. Shabashov, Q.-N. Pham
and A. Lazareva, Synlett, 2006, 3382; (c) D. Alberico, M. E. Scott and
M. Lautens, Chem. Rev., 2007, 107, 174; (d) H. M. L. Davies and
J. R. Manning, Nature, 2008, 451, 417; (e) F. Kakiuchi and T. Kochi,
Synthesis, 2008, 3013; (f) X. Chen, K. M. Engle, D.-H. Wang and
J.-Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094; (g) L. Ackermann,
R. Vicente and A. R. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792;
(h) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and
J. F. Hartwig, Chem. Rev., 2010, 110, 931; (i) R. Jazzar, J. Hitce,
A. Renaudat, J. Sofack-Kreutzer and O. Baudoin, Chem.–Eur. J., 2010,
16, 2654; ( j) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev.,
2010, 110, 624; (k) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010,
110, 1147.
aConditions: 1a (0.5 mmol), 2 (0.75 mmol), Pd(CH3CN)2Cl2 (5 mol%),
Phen·H2O (6 mol%), Cu(OAc)2 (3 mmol), Na2CO3 (0.75 mmol), TBAB
(0.1 mmol), in 1,4-dioxane–DMSO (9 : 1, 6 mL), 100°C, under N2,
4.5 h. The yields refer to isolated products. bWithout TBAB.
2 For selected examples of direct arylation of N-heterocycles by using
halides, see: (a) H. A. Chiong and O. Daugulis, Org. Lett., 2007, 9,
1449; (b) G. L. Turner, J. A. Morris and M. F. Greaney, Angew. Chem.,
Int. Ed., 2007, 46, 7996; (c) H.-Q. Do and O. Daugulis, J. Am. Chem.
Soc., 2007, 129, 12404; (d) L.-C. Campeau, M. Bertrand-Laperle,
J.-P. Leclerc, E. Villemure, S. Gorelsky and K. Fagnou, J. Am. Chem.
Soc., 2008, 130, 3276; (e) F. Besselivre, F. Mahuteau-Betzer,
D. S. Grierson and S. Piguel, J. Org. Chem., 2008, 73, 3278;
(f) E. F. Flegeau, M. E. Popkin and M. F. Greaney, Org. Lett., 2008, 10,
2717; (g) T. Martin, C. Verrier, C. Hoarau and F. Marsais, Org. Lett.,
2008, 10, 2909; (h) H.-Q. Do, R. M. K. Khan and O. Daugulis, J. Am.
Chem. Soc., 2008, 130, 15185; (i) J. Canivet, J. Yamaguchi, I. Ban and
K. Itami, Org. Lett., 2009, 11, 1733; ( j) E. T. Nadres, A. Lazareva and
O. Daugulis, J. Org. Chem., 2011, 76, 471.
Scheme 2 Proposed mechanism.
3 (a) H. Hachiya, K. Hirano, T. Satoh and M. Miura, Angew. Chem., 2010,
122, 2248, (Angew. Chem., Int. Ed., 2010, 49, 2202); (b) W. Han,
P. Mayer and A. R. Ofial, Chem.–Eur. J., 2011, 17, 6904.
in the absence of azole but in the presence of Pd(MeCN)2Cl2
(10 mol%), Phen·H2O (12 mol%) and Cu(OAc)2 (4 equiv), 4,4′-
dimethylbiphenyl (VI) was isolated as the major product in 65%
yield, suggesting that a Pd(p-tolyl)2 species (V) is involved. In
contrast, when the palladium catalyst was omitted, the reaction
of 2a and Cu(OAc)2 afforded a mixture of 4,4′-dimethylbiphenyl
(VI) (yield: 13%) and SO2(p-tolyl)2 (IV) (yield: 25%).22 On the
basis of these results, a mechanism is proposed (Scheme 2).
Copper-mediated denitrogenative and desulfitative oxidation of
TsNHNH2 affords a copper(II) aryl sulfonyl species (I), which
undergoes transmetalation to afford a palladium p-tolyl inter-
mediate (II), which can subsequently lead to the 4,4′-dimethylbi-
phenyl byproduct (III). This palladium p-toyl is proposed to
interact with benzoxazole 1a, leading to C–H activation and for-
mation of a palladium(II) aryl heteroaryl intermediate (III), C–C
reductive elimination of which furnishes product 3a. The cataly-
tic cycle is completed when the Pd(0) species is oxidized to
Pd(II) by Cu(OAc)2.
4 (a) S.-D. Yang, C.-L. Sun, Z. Fang, B.-J. Li, Y.-Z. Li and Z.-J. Shi,
Angew. Chem., Int. Ed., 2008, 47, 1473; (b) J.-B. Xia and S.-L. You,
Org. Lett., 2009, 11, 1187; (c) J. Wen, S. Qin, L.-F. Ma, L. Dong,
J. Zhang, S.-S. Liu, Y.-S. Duan, S.-Y. Chen, C.-W. Hu and X.-Q. Yu,
Org. Lett., 2010, 12, 2694; (d) H. Hachiya, K. Hirano, T. Satoh and
M. Miura, ChemCatChem, 2010, 2, 1403; (e) S. Kirchberg, S. Tani,
K. Ueda, J. Yamaguchi, A. Studer and K. Itami, Angew. Chem., Int. Ed.,
2011, 50, 2387; (f) S. Ranjit and X. Liu, Chem.–Eur. J., 2011, 17, 1105;
(g) I. Schnapperelle, S. Breitenlechner and T. Bach, Org. Lett., 2011, 13,
3640; (h) F. Yang, Z. Xu, Z. Wang, Z. Yu and R. Wang, Chem.–Eur. J.,
2011, 17, 6321; (i) B. Liu, X. Qin, K. Li, X. Li, Q. Guo, J. Lan and
J. You, Chem.–Eur. J., 2010, 16, 11836.
5 (a) C. M. So, C. P. Lau and F. Y. Kwong, Angew. Chem., Int. Ed., 2008,
47, 8059; (b) D.-H. Wang, T.-S. Mei and J.-Q. Yu, J. Am. Chem. Soc.,
2008, 130, 17676; (c) C. S. Bryan, J. A. Braunger and M. Lautens,
Angew. Chem., Int. Ed., 2009, 48, 7064; (d) G. A. Molander and
F. Beaumard, Org. Lett., 2010, 12, 4022; (e) R. Shintani, M. Takeda,
T. Tsuji and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 13168; (f) M. Li,
C. Wang and H. Ge, Org. Lett., 2011, 13, 2062.
6 (a) N. R. Deprez, D. Kalyani, A. Krause and M. S. Sanford, J. Am.
Chem. Soc., 2006, 128, 4972; (b) R. J. Phipps, N. P. Grimster and
M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 8172; (c) E. A. Merritt and
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 7479–7482 | 7481