10.1002/anie.201906805
Angewandte Chemie International Edition
COMMUNICATION
Figure 5. Schematic of the pyruvate aldolase platform for organofluorine synthesis. The densely-functionalized fluoropyruvate adducts can be transformed into new
functionalities through decarboxylation, ketoreduction, or transamination. Various fluorosugars can be accessed from fluoroacids by partial reduction of the
carboxylate to an aldehyde (direct strategy) or by full reduction of the carboxylate to an alcohol when R contains a masked aldehyde (inversion strategy). Novel
aldehydes synthesized in this manner could be used as the acceptor in further aldol reactions to incrementally build molecular complexity.
[11]
a) S. Watanabe, M. Saimura, K. Makino, J. Biol. Chem. 2008, 283,
20372–20382. b) D. Rea, R. Hovington, J. F. Rakus, J. A. Gerlt, V.
Fülöp, T. D. H. Bugg, D. I. Roper, Biochemistry 2008, 47, 9955–
9965. c) K. Hernandez, J. Bujons, J. Joglar, S. J. Charnock, P.
Domínguez De María, W. D. Fessner, P. Clapés, ACS Catal. 2017,
7, 1707–1711. d) K. Hernández, A. Gómez, J. Joglar, J. Bujons, T.
Parella, P. Clapés, Adv. Synth. Catal. 2017, 359, 2090–2100. e) K.
Hernández, J. Joglar, J. Bujons, T. Parella, P. Clapés, Angew.
Chem. Int. Ed. 2018, 57, 3583–3587.
GM123181-01. D.H. and M.H.G. were supported by Director,
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.
Keywords: Fluorine, biocatalysis, aldol reaction, lyases
[12]
[13]
a) W. Wang, S. Y. K. Seah, Biochemistry 2005, 44, 9447–9455. b)
D. Rea, V. Fülöp, T. D. H. Bugg, D. I. Roper, J. Mol. Biol. 2007, 373,
866–876. c) W. Wang, P. Baker, S. Y. K. Seah, Biochemistry 2010,
49, 3774–3782. d) M. Coincon, W. Wang, J. Sygusch, S. Y. K.
Seah, J. Biol. Chem. 2012, 287, 36208–36221.
V. De Berardinis, C. Guérard-Hélaine, E. Darii, K. Bastard, V.
Hélaine, A. Mariage, J. L. Petit, N. Poupard, I. Sánchez-Moreno, M.
Stam, et al., Green Chem. 2017, 19, 519–526.
H. S. Bea, S. H. Lee, H. Yun, Biotechnol. Bioprocess Eng. 2011, 16,
291–296.
I. V. Fateev, K. V. Antonov, I. D. Konstantinova, T. I. Muravyova, F.
Seela, R. S. Esipov, A. I. Miroshnikov, I. A. Mikhailopulo, Beilstein J.
Org. Chem. 2014, 10, 1657–1669.
[1]
a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886.
b) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc.
Rev. 2008, 37, 320–330. c) R. Berger, G. Resnati, P. Metrangolo, E.
Weber, J. Hulliger, Chem. Soc. Rev. 2011, 40, 3496–3508.
a) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013,
52, 8214–8264. b) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem.
Rev. 2015, 115, 826–870.
a) K. M. Koeller, C. H. Wong, Nature 2001, 409, 232–240. b) B. G.
Davis, V. Boyer, Nat. Prod. Rep. 2001, 18, 618–640. c) M. Hönig, P.
Sondermann, N. J. Turner, E. M. Carreira, Angew. Chem. Int. Ed.
2017, 56, 8942–8973.
a) M. C. Walker, B. W. Thuronyi, L. K. Charkoudian, B. Lowry, C.
Khosla, M. C. Y. Chang, Science 2013, 341, 1089–1094. b) B. W.
Thuronyi, T. M. Privalsky, M. C. Y. Chang, Angew. Chem. Int. Ed.
2017, 56, 13637–13640.
a) B. M. Trost, C. S. Brindle, Chem. Soc. Rev. 2010, 39, 1600–
1632. b) Y. Yamashita, T. Yasukawa, W. J. Yoo, T. Kitanosono, S.
Kobayashi, Chem. Soc. Rev. 2018, 47, 4388–4480. c) J. Saadi, H.
Wennemers, Nat. Chem. 2016, 8, 276–280.
a) S. M. Dean, W. A. Greenberg, C. H. Wong, Adv. Synth. Catal.
2007, 349, 1308–1320. b) M. Brovetto, D. Gamenara, P. Saenz
Méndez, G. A. Seoane, Chem. Rev. 2011, 111, 4346–4403. c) K.
Fesko, M. Gruber-Khadjawi, ChemCatChem 2013, 5, 1248–1272.
a) M. C. Shelton, I. C. Cotterill, S. T. A. Novak, R. M. Poonawala, S.
Sudarshan, E. J. Toone, J. Am. Chem. Soc. 1996, 118, 2117–2125.
b) I. C. Cotterill, D. P. Henderson, M. C. Shelton, E. J. Toone, J.
Mol. Catal. B Enzym. 1998, 5, 103–111. c) J. Stockwell, A. D.
Daniels, C. L. Windle, T. A. Harman, T. Woodhall, T. Lebl, C. H.
Trinh, K. Mulholland, A. R. Pearson, A. Berry, A. Nelson, Org.
Biomol. Chem. 2015, 14, 105–112. d) J. K. Howard, M. Müller, A.
Berry, A. Nelson, Angew. Chem. Int. Ed. 2016, 55, 6767–6770. e)
C. L. Windle, A. Berry, A. Nelson, Curr. Opin. Chem. Biol. 2017, 37,
33–38.
[2]
[3]
[14]
[15]
[4]
[5]
[6]
[7]
[8]
a) H. Nozaki, S. Kuroda, K. Watanabe, K. Yokozeki, Appl. Environ.
Microbiol. 2008, 74, 7596–7599. b) M. Dick, R. Hartmann, O. H.
Weiergräber, C. Bisterfeld, T. Classen, M. Schwarten, P.
Neudecker, D. Willbold, J. Pietruszka, Chem. Sci. 2016, 7, 4492–
4502.
[9]
B. A. Manjasetty, J. Powlowski, A. Vrielink, Proc. Natl. Acad. Sci.
2003, 100, 6992–6997.
[10]
a) B. K. Hubbard, M. Koch, D. R. J. Palmer, P. C. Babbitt, J. A.
Gerlt, Biochemistry 1998, 37, 14369–14375. b) T. Izard, N. C.
Blackwell, EMBO J. 2000, 19, 3849–3856.
This article is protected by copyright. All rights reserved.