558
Glycoconj J (2010) 27:549–559
14. Houseman, B.T., Mrksich, M.: Carbohydrate arrays for the
evaluation of protein binding and enzymatic modification. Chem
Biol 9, 443–454 (2002)
15. Kikkeri, R., Lepenies, B., Adibekian, A., Laurino, P., Seeberger, P.
H.: In vitro imaging and in vivo liver targeting with carbohydrate
capped quantum dots. J. Am. Chem. Soc. 131, 2110–2112 (2009)
16. Kawasaki, N., Itoh, S., Hashii, N., Takakura, D., Qin, Y., Huang,
X., Yamaguchi, T.: The significance of glycosylation analysis in
development of biopharmaceuticals. Biol. Pharm. Bull. 32, 796–
800 (2009)
17. Moncayo, A.: Chagas disease: current epidemiological trends alter the
interruption of vectorial and transfusional transmission in the Southern
Cone countries. Mem. Inst. Oswaldo. Cruz. 98, 577–591 (2003)
18. Schenkman, S., Jiang, M.S., Hart, G.W., Nussenzweig, V.: A
novel cell surface trans-sialidase of Trypanosoma cruzi generates
a stage-specific epitope required for invasion of mammalian cells.
Cell 65, 1117–1125 (1991)
The PEG-conjugates are potentially useful for studies on
inhibition of other galactose binding proteins. In this respect,
amino derivatives of lactulose have been synthesized and their
function as galectin inhibitors has been described [39].
Acknowledgments This work was supported by grants from
Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT),
National Research Council (CONICET) and Universidad de Buenos
Aires. A. C. C. Frasch, R. M. de Lederkremer and R. Agustí are
research members of CONICET and M. E. Giorgi is a fellow from
CONICET. The work of A. C. C. Frasch was partially supported by
International Research Scholar grants from the Howard Hughes
Medical Institute.
19. Frasch, A.C.C.: Functional diversity in the tans-sialidase and
mucin families in Trypanosoma cruzi. Parasitol. Today 16, 282–
286 (2000)
References
1. Mongardini, C., Veronese, F.M.: Stabilization of substances in
circulation. Bioconjugate Chem. 9, 418–450 (1998)
2. Veronese, F.M., Mero, A.: The impact of PEGylation on
biological therapies. BioDrugs. 22, 315–329 (2008)
3. Greenwald, R.B.: PEG drugs: an overview. J. Control. Release.
74, 159–171 (2001)
4. Chapman, A.P.: PEGylated antibodies and antibody fragments for
improved therapy: a review. Adv. Drug. Deliv. Res. 54, 531–545
(2002)
5. Morpurgo, M., Monfardini, C., Hofland, L.J., Sergi, M., Orsolini,
P., Dumont, J.M., Veronese, F.M.: Selective alkylation and
acylation of α and ∈ amino group with PEG in a somatostatin
analogue: tailored chemistry for optimized bioconjugates. Bio-
conjugate Chem. 13, 1238–1243 (2002)
20. Agustí, R., Giorgi, M.E., Mendoza, V.M., Gallo-Rodriguez, C.,
Lederkremer, R.M.: Comparative rate of sialylation by recombinant
trans-sialidase and inhibitor properties of synthetic oligosaccharides
from Trypanosoma cruzi mucins-containing galactofuranose and
galactopyranose. Bioorg. Med. Chem. 15, 2611–2616 (2007)
21. Lederkremer, R.M., Agustí, R.: Glycobiology of Trypanosoma
cruzi. Adv. Carbohydr. Chem. Biochem. 62, 311–366 (2009)
22. Kröger, L., Scudlo, A., Thiem, J.: Subsequent enzymatic galactosy-
lation and sialylation towards sialylated Thomsen-Friedenreich
antigen components. Adv. Synth. Catal. 348, 1217–1227 (2006)
23. Tomlinson, S., de Carvalho LC, Pontes, Vandekerckhove, F.,
Nussenzweig, V.: Role of sialic acid in the resistance of
Trypanosoma cruzi trypomastigotes to complement. J. Immunol.
153, 3141–3147 (1994)
6. Marcus, Y., Sasson, K., Fridkin, M., Shechter, Y.: Turning low-
molecular-weight drugs into prolonged acting prodrugs by
reversible pegylation: a study with gentamicin. J. Med. Chem.
51, 4300–4305 (2008)
7. Dixit, V., Van den Bossche, J., Sherman, D.M., Thompson, D.H.,
Andres, R.P.: Synthesis and grafting of thioctic acid-PEG-folate
conjugates onto Au nanoparticles for selective targeting of folate
receptor-positive tumor cells. Bioconjugate Chem. 117, 603–609
(2006)
8. Prego, C., Torres, D., Fernandez-Megia, E., Novoa-Carballal, R.,
Quiñoá, E., Alonso, M.J.: Chitosan-PEG nanocapsules as new
carriers for oral peptide delivery. Effect of chitosan pegylation
degree. J. Controlled Release. 111, 299–308 (2006)
9. Fernandez-Megia, E., Novoa-Carballal, R., Quiñoá, E., Riguera,
R.: Conjugation of bioactive ligands to PEG-grafted chitosan at
the distal end of PEG. Biomacromolecules 8, 833–842 (2007)
10. Park, I.L., Kim, T.H., Park, Y.H., Shin, B.A., Choi, E.S.,
Chowdhury, E.H., Akaike, T., Cho, C.S.: Galactosylated
chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting
DNA carrier. J. Controlled Release 76, 349–362 (2001)
11. Youn, Y.S., Na, D.H., Yoo, S.D., Song, S.C., Lee, K.C.:
Carbohydrate-specifically polyethylene glycol-modified ricin A-
chain with improved therapeutic potential. Int. J. Biochem. Cell.
Biol. 37, 1525–1533 (2005)
24. Pereira-Chioccola, V.L., Acosta-Serrano, A., Correia de Almeida,
I., Ferguson, M.A., Souto-Padron, T., Rodrigues, M.M., Trav-
assos, L.R., Schenkman, S.: Mucin-like molecules form a
negatively charged coat that protects Trypanosoma cruzi trypo-
mastigotes from killing by human anti-alpha-galactosyl anti-
bodies. J Cell Sci 113, 1299–1307 (2000)
25. Nagamune, K., Acosta-Serrano, A., Uemura, H., Brun, R., Kunz-
Renggli, C., Maeda, Y., Ferguson, M.A., Kinoshita, T.: Surface
sialic acids taken from the host allow trypanosome survival in
tsetse fly vectors. J Exp Med. 199, 1445–1450 (2004)
26. Amaya, F.M., Buschiazzo, A., Nguyen, T., Alzari, P.M.: The high
resolution structures of free and inhibitor-bound Trypanosoma
rangeli sialidase and its camparison with T. cruzi trans-sialidase. J.
Mol. Biol. 325, 773–784 (2003)
27. Buschiazzo, A., Amaya, M.F., Cremona, M.L., Frasch, A.C.C.,
Alzari, P.M.: The crystal structure and mode of action of trans-
sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol.
Cell. 10, 757–768 (2002)
28. Neres, J., Bryce, R.J., Douglas, K.T.: Rational drug design in
parasitology: trans-sialidase as a case study for Chagas disease.
Drug Discov. Today 13, 110–117 (2008)
29. Buchini, S., Buschiazzo, A., Withers, S.G.: A new generation of
specific Trypanosoma cruzi trans-sialidase inhibitors. Angew.
Chem. Int. Ed. Engl. 47, 2700–2703 (2008)
12. Salmaso, S., Semenzato, A., Bersani, S., Mastrotto, F., Scomparin,
A., Caliceti, P.: Site-selective protein glycation and PEGylation.
Euro. Polym. J. 44, 1378–1389 (2008)
13. DeFrees, S., Wang, Z.G., Xing, R., Scott, A.E., Wang, J., Zopf,
D., Gouty, D.L., Sjoberg, E.R., Panneerselvam, K., Brinkman-Van
del Linden, E.C., Bayer, R.J., Tarp, M.A., Clausen, H.: Glyco-
PEGylation of recombinant therapeutic proteins produced in
Escherichia coli. Glycobiology 16, 833–843 (2006)
30. Kim, J.H., Ryu, H.W., Shim, J.H., Park, K.H., Withers, S.G.:
Development of new and selective Trypanosoma cruzi trans-
sialidase inhibitors from sulfonamide chalcones and their deriva-
tives. Chembiochem 10, 2475–2479 (2009)
31. Arioka, S., Sakagami, M., Uematsu, R., Yamaguchi, H., Togame,
H., Takemoto, H., Hinou, H., Nishimura, S.: Potent inhibitor
scaffold against Trypanosoma cruzi trans-sialidase. Bioorg. Med.
Chem. 18, 1633–1640 (2010)