10.1002/adsc.201801305
Advanced Synthesis & Catalysis
[1] a) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359-
4369; b) N. A. Meanwell, J. Med. Chem. 2011, 54,
2529-2591; c) J. Wang, M. Sánchez-Roselló, J. L.
Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V.
A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432-
2506; d) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J.
Med. Chem. 2014, 57, 2832-2842.
[2] K. Müller, C. Faeh, F. Diederich, Science 2007, 317,
1881-1886.
[3] Selected reviews: a) J.-A. Ma, D. Cahard, J. Fluorine
Chem. 2007, 128, 975-996; b) T. Furuya, A. S. Kamlet,
T. Ritter, Nature 2011, 473, 470-477; c) A. Studer,
Angew. Chem. Int. Ed. 2012, 51, 8950-8958; Angew.
Chem. 2012, 124, 9082-9090; d) C. Zhang, Adv. Synth.
Catal. 2014, 356, 2895-2906; e) C. Zhang, Org. Biomol.
Chem. 2014, 12, 6580-6589; f) L. Chu, F.-L. Qing, Acc.
Chem. Res. 2014, 47, 1513-1522; g) X. Liu, C. Xu, M.
Wang, Q. Liu, Chem. Rev. 2015, 115, 683-730; h) C.
Alonso, E. Martínez de Marigorta, G. Rubiales, F.
Palacios, Chem. Rev. 2015, 115, 1847-1935; i) J.
Charpentier, N. Fruh, A. Togni, Chem Rev 2015, 115,
650-682; i) X. Pan, H. Xia, J. Wu, Org. Chem. Front.
2016, 3, 1163-1185; j) C. Zhang, Adv. Synth. Catal.
2017, 359, 372-383; k) Y. Zhao, F. Liu, Tetrahedron
Lett. 2018, 59, 180-187; l) H.-X. Song, Q.-Y. Han, C.-
L. Zhao, C.-P. Zhang, Green Chem. 2018, 20, 1662-
1731; m) T. Koike, M. Akita, Chem 2018, 4, 409-437.
Scheme 4. Mechanistic proposal for the photoassisted
α-trifluoromethylation of acetophenones with TFAA
exemplified by 4-fluoroacetophenone as the substrate.
In summary, we achieved the direct α-
trifluoromethylation of aromatic ketones under
photoassisted conditions. This method utilizes TFAA
as CF3 source and pyridine-N-oxide as oxidant.
Because of the low cost and the availability of these
materials, we expect that this method will find
numerous applications for the synthesis of α-CF3
ketones.
[4] Selected recent reports for electrophilic trifluoro-
methylation: a) F. Gelat, A. Patra, X. Pannecoucke, A.
T. Biju, T. Poisson, T. Besset, Org. Lett. 2018, 20,
3897-3901; b) W. Yang, D. Ma, Y. Zhou, X. Dong, Z.
Lin, J. Sun, Angew. Chem. Int. Ed. 2018, 57, 12097-
12101; Angew. Chem. 2018, 130, 12273-12277; c) D.
Katayev, H. Kajita, A. Togni, Chem. Eur. J. 2017, 23,
8324-8324; d) D. Katayev, V. Matoušek, R. Koller, A.
Togni, Org. Lett. 2015, 17, 5898-5901; e) A. Prieto, O.
Baudoin, D. Bouyssi, N. Monteiro, Chem. Commun.
2016, 52, 869-881.
Experimental Section
In a 4 mL screw-capped vial with a rubber septum, 4-
fluoroacetophenone (60 µl, 0.5 mmol), pyridine-N-oxide
(240 mg, 2.5 mmol), Ru(bpy)3(PF6)2 (13.0 mg, 0.015
mmol) were dissolved in 2 mL dry MeCN. The vial was
closed and degassed by bubbling argon for 30 sec.
Trifluoroacetic anhydride (480 µl, 3.5 mmol) was added to
the reaction mixture and stirred for 16 h at 65 °C under
blue light irradiation (435-445 nm, 500 mA, 5-6 watts).
After this time, the reaction mixture was quenched by
adding 10 mL sat. aq. NaHCO3 solution and extracted with
EtOAc (3 X 15 mL). The organic layer was dried using
anhydrous MgSO4 and concentrated in vacuo. The pure
product was obtained after the chromatographic
purification as colorless oil. Yield: 64%; 66 mg. Rf = 0.22
[5] Selected recent reports for nucleophilic trifluoro-
methylations: a) B. Musio, E. Gala, S. V. Ley, ACS
Sustain. Chem. Eng. 2018, 6, 1489-1495; b) J. A. Pike,
J. W. Walton, Chem. Commun. 2017, 53, 9858-9861; c)
G. K. S. Prakash, F. Wang, Z. Zhang, R. Haiges, M.
Rahm, K. O. Christe, T. Mathew, G. A. Olah, Angew.
Chem. Int. Ed. 2014, 53, 11575-11578; Angew. Chem.
2014, 126, 11759-11762.
1
(5% EtOAc in pet ether); H NMR (301 MHz, CDCl3) δ
8.00 – 7.92 (m, 1H), 7.21 – 7.13 (m, 1H), 3.76 (q, J = 9.9
Hz, 1H); 13C NMR (76 MHz, CDCl3) δ 188.11 (q, J = 2.5
Hz), 166.37 (d, J = 257.1 Hz), 132.30 (dq, J = 3.2, 1.7 Hz),
131.17 (d, J = 9.6 Hz), 123.86 (q, J = 277.0 Hz), 116.20 (d,
J = 22.2 Hz), 42.14 (q, J = 28.4 Hz); 19F NMR (283 MHz,
CDCl3) δ -62.00 (s), -102.87 (s).
[6] Selected recent reports for radical trifluoromethylation:
a) S. Zhou, T. Song, H. Chen, Z. Liu, H. Shen, C. Li,
Org. Lett. 2017, 19, 698-701; b) L. Wu, F. Wang, X.
Wan, D. Wang, P. Chen, G. Liu, J. Am. Chem. Soc.
2017, 139, 2904-2907; c) F. Wang, D. Wang, Y. Zhou,
L. Liang, R. Lu, P. Chen, Z. Lin, G. Liu, Angew. Chem.
Int. Ed. 2018, 57, 7140-7145; Angew. Chem. 2018, 130,
7258-7263; d) Y. Xu, Z. Wu, J. Jiang, Z. Ke, C. Zhu,
Angew. Chem. Int. Ed. 2017, 56, 4545-4548; Angew.
Chem. 2017, 129, 4616-4619; e) B. Chang, Y. Su, D.
Huang, K.-H. Wang, W. Zhang, Y. Shi, X. Zhang, Y.
Hu, J. Org. Chem. 2018, 83, 4365-4374; f) Y. Ouyang,
X.-H. Xu, F.-L. Qing, Angew. Chem. Int. Ed. 2018, 57,
6926-6929; Angew. Chem. 2018, 130, 7042-7045; g) A.
Acknowledgements
CaRLa (Catalysis Research Laboratory) is being co‐financed by
the Ruprechts‐Karls‐University Heidelberg (University of
Heidelberg) and BASF SE.
References
4
This article is protected by copyright. All rights reserved.