¨
H. Unver et al. · (E)-N-(4-Nitrobenzylidene)-3,4-dimethylaniline and (E)-N-(3-Nitrobenzylidene)-3,4-dimethylaniline 189
idealized positions with C–H distances in the range 0.93 – cessor with 512 MB RAM and Microsoft Windows as the
˚
0.96 A. The positions of H atoms for 2 were refinded freely. operating system.
The details of the X-ray data collection, structure solution
We report βtot (total first hyperpolarizability) values for
and structure refinements are given in Table 4. The molecu- the examined compounds. The components of the first
lar structures with the atom numbering scheme are shown in hyperpolarizability and the complete equation for calcu-
Fig. 2 [22].
lating the magnitude of the first hyperpolarizability from
GAUSSIAN98W output are described in ref. [18].
CCDC 743294 and 743295 contain the supplementary
Since the β values of GAUSSIAN98W outputs are reported
in atomic units (a. u.), the calculated β values have been
converted into electrostatic units (esu) (1 a. u. = 8.6393 ×
10−33 esu). To calculate the electric dipole moments and the
hyperpolarizabilities, the origin of the cartesian coordinate
system (x, y, z) = (0, 0, 0) has been chosen at the centers of
mass of 1 and 2.
crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic
Theoretical calculations
As the first step of electric dipole moment and static first
hyperpolarizability calculations, the geometries have been
optimized in the ab initio restricted and unrestricted Hartree-
Fock levels for 1 and 2, respectively. Then, the electric dipole
moments and first hyperpolarizability tensor components of
the investigated compounds have been calculated using the
FF MP2 method at 6-311+G(d, p) polarized and diffused ba-
sis set level, which has been found to be more than adequate
for obtaining reliable trends in the hyperpolarizability val-
ues. All µ and β computations have been performed using
GAUSSIAN98W [23] on an Intel Pentium IV 1.7 GHz pro-
Besides, the π →π∗ transition wavelengths (λmax) of the
lowest-lying electronic transition for 1 and 2 have been cal-
culated by the electron excitation configuration interaction
using the CIS/6-31G method in GAUSSIAN98W.
Acknowledgement
This work was supported by the Turkish State of Planning
˙
Organization (DPT), TUBITAK and Selc¸uk University under
grant numbers 2003-K-12019010-7, 105T132, 2003/030, re-
spectively.
[1] N. P. Prasad, D. J. Williams, Introduction to Nonlinear
Optical Effects in Organic Molecules and Polymers,
Wiley, New York, 1991.
[2] J. J. Wolff, R. Wortmann, Adv. Phys. Org. Chem. 1999,
32, 121.
[12] Q. Yang, Y. Tang, W. Yang, H. Chen, Acta Crystallogr.
1998, C54, 1532.
[13] M. S. Wong, V. Gramlich, F. Pan, C. Bosshard,
P. Gu¨ nter, Acta Crystallogr. 1997, C53, 757.
[14] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer,
A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2
1987, 1.
[3] S. G. Prabhu, P. M. Rao, S. I. Bhat, V. Upadyaya, S. R.
Inamdar, J. Crystal Growth 2001, 233, 375.
[4] S. R. Marder, J. E. Sohn, G. D. Stucky (Eds.), Materi-
als for Nonlinear Optics: Chemical Perspectives ACS
Symposium Series, American Chemical Society, Wash-
ington, DC, 1991.
[15] A. Domenicano in Accurate Molecular Structures,
(Eds.: A. Domenicano and I. Hargittai), Oxford Uni-
versity Press, 1992, pp. 510–542.
[16] J. Kulakowska, S. Kucharski, Eur. Polymer J. 2000, 36,
¨
[5] A. Karakas¸, A. Elmali, H. Unver, I. Svoboda, J. Mol.
1805.
Struct. 2004, 702, 103.
[17] V. Lukesˇ, M. Breza, D. Ve´gh, P. Hrdlovie´, V. Laurinc,
Synth. Met. 2003, 138, 399.
[6] J. F. Nicoud, R. J. Twieg, D. S. Chemla, J. Zyss (Eds.),
Nonlinear Optical Properties of Organic Molecules
and Crystals, Vol. 1, Academic Press, New York, 1987,
chapter II–III, pp. 277.
¨
[18] A. Karakas¸, A. Elmali, H. Unver, H. Kara, Y. Yahsi,
Z. Naturforsch. 2006, 61b, 968.
[19] Enraf-Nonius Diffractometer Control Software (re-
lease 5.1), Enraf-Nonius, Delft (Netherlands) 1993.
[20] G. M. Sheldrick, SHELXS-97, Program for the Solution
of Crystal Structures, University of Go¨ttingen, Go¨ttin-
gen (Germany) 1997. See also: G. M. Sheldrick, Acta
Crystallogr. 1990, A46, 467.
[7] M. Jalali-Heravi, A. A. Khandar, I. Sheikshoaie, Spec-
trochim. Acta Part A 2000, 56, 1575.
[8] C. Bosshard, K. Sutter, R. Schlesser, P. Gu¨nter, J. Opt.
Soc. Am. B 1993, 10, 867.
[9] J. Jacques, A. Collet, S. H. Willen, Enantiomers, Race-
mates and Resolutions, Wiley Interscience, New York,
1981, pp. 1–23.
[10] I. D. L. Albert, T. J. Marks, M. A. Ratner, Chem. Mater.
1998, 10, 753.
[11] Y. Zhou, S. Feng, Z. Xie, Opt. Mater. 2003, 24, 667.
[21] G. M. Sheldrick, SHELXL-97, Program for the Refine-
ment of Crystal Structures, University of Go¨ttingen,
Go¨ttingen (Germany) 1997. See also: G. M. Sheldrick,
Acta Crystallogr. 2008, A64, 112.
[22] C. K. Johnson, M. N. Burnett, ORTEP-III, Rep. ORNL-
Unauthenticated
Download Date | 4/16/19 7:51 PM