60
I. Jlalia et al. / Journal of Molecular Catalysis A: Chemical 393 (2014) 56–61
In addition, the pore size may have a great effect on the reactivity
as the reaction is believed to occur inside the pores (as corroborated
by N2 volumetric adsorption of the catalyst without washing). The
influence of these parameters is currently under investigation and
will be reported in due time.
4. Conclusion
We have shown herein that our Cu(II) SBA-15 material can be
used successfully as a reusable catalyst for an azide–alkyne cycload-
dition reaction without degradation. The conversion can be as high
as 99% and a total regioselectivity is obtained. To our knowledge,
this is the first time that a copper(II) SBA-15 material has been
shown to be active as a reusable catalyst for azide–alkyne cycload-
dition reactions.
Fig. 5. Deuteration experiment.
Acknowledgements
Nicolas Pasternak is gratefully acknowledge for providing some
Cu(II) SBA-15 samples and for performing N2-adsoprtion analysis.
Appendix A. Supplementary data
Supplementary data associated with this article can be
References
[1] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed. 41
(2002) 2596–2599.
[2] C.W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 67 (2002) 3057–3064.
[3] M. Meldal, C.W. Tornøe, Chem. Rev. 108 (2008) 2952–3015.
[4] C. Girard, E. Önen, M. Aufort, S. Bauvière, E. Samson, J. Herscovici Org. Lett. 8
(2006) 1689–1692.
[5] C.D. Smith, I.R. Baxendale, S. Lanners, J.J. Hayward, S.C. Smith, S.V. Ley, Org.
Biomol. Chem. 5 (2007) 1559–1561.
Fig. 6. Simplified mechanism of the Cu(II) SBA-15 catalyzed Huisgen reaction.
[6] J. Albadi, M. Keshavarz, Synth. Commun. 43 (2013) 2019–2030.
[7] U. Sirion, Y.J. Bae, B.S. Lee, D.Y. Chi, Synlett 15 (2008) 2326–2330.
[8] A. Coelho, P. Diz, O. Caaman˜o, E. Sotelo, Adv. Synth. Catal. 352 (2010)
1179–1192.
1,4-regioselectivity is rationalized through
a covalent bond
exhibit superior reactivity toward organic azides compared to their
monomeric counterparts [61]. Such complexes were supposed to
be involved in the recent description of the copper catalyzed Huis-
gen reaction [40,57,60], and were recently unveiled [62]. Since
can hypothesize that the formation of a Cu(II) acetylide complex
(Fig. 6) is a key and rate-determining step [40,60,62]. Once the
can subsequently occur through internal proton delivery from the
residual silanol groups of the surface.
[9] P. Diz, A. Coelho, A. El Maatougui, J. Azuaje, O. Caaman˜o, E. Sotelo, J. Org. Chem.
78 (2013) 6540–6549.
[10] T.R. Chan, V.V. Fokin, QSAR Comb. Sci. 26 (2007) 1274–1279.
[11] M. Lammens, J. Skey, S. Wallyn, R. O’Reilly, F. Du Prez, Chem. Commun. 46
(2010) 8719–8721.
[12] S. Wallyn, M. Lammens, R. O’Reilly, F. Du Prez, J. Polym. Sci. A: Polym. Chem. 49
(2011) 2878–2885.
[13] E. Ozkal, S. Özc¸ ubukc¸ u, C. Jimeno, M.A. Pericàs, Catal. Sci. Technol 2 (2012)
195–200.
[14] L. Bonami, W. Van Camp, D. Van Rijckegem, F.E. Du Prez, Macromol. Rapid
Commun. 30 (2009) 34–38.
[15] G.M. Pawar, B. Bantu, J. Weckesser, S. Blechert, K. Wurst, M.R. Buchmeiser,
Dalton Trans. 48 (2009) 9043–9051.
[16] M.N. Soltani Rad, S. Behrouz, A. Movahedian, M.M. Doroodmand, Y. Ghasemi, S.
Rasoul-Amini, A.-R. Ahmadi Gandomani, R. Rezaie, Helv. Chim. Acta 96 (2013)
688–701.
[17] T. Miao, L. Wang, Synthesis (2008) 363–368.
[18] P. Li, L. Wang, Y. Zhang, Tetrahedron 64 (2008) 10825–10830.
[19] T. Shamim, S. Paul, Catal. Lett. 136 (2010) 260–265.
[20] A. Megia-Fernandez, M. Ortega-Mun˜oz, J. Lopez-Jaramillo, F. Hernandez-Mateo,
F. Santoyo-Gonzalez, Adv. Synth. Catal. 352 (2010) 3306–3320.
[21] M.N. Soltani Rad, S. Behrouz, M.M. Doroodmand, A. Movahedian, Tetrahedron
68 (2012) 7812–7821.
Two supplementary experiments were performed using Cu(II)-
SBA 15 with different porosity or Cu loading (Fig. 7).
[22] A.Z. Ahmadi, F. Heidarizadeh, M. Keshavarz, Synth. Commun. 43 (2013)
2100–2109.
[23] I. Jlalia, H. Elamari, F. Menagem, J. Herscovici, C. Girard, Tetrahedron Lett. 49
(2008) 6756–6758.
[24] S. Chassaing, M. Kumarraja, A. Sani Souna Sido, P. Pale, J. Sommer, Org. Lett. 9
(2007) 883–886.
[25] A. Alix, S. Chassaing, P. Pale, J. Sommer, Tetrahedron 64 (2008) 8922–8929.
[26] S. Chassaing, A. Sani Souna Sido, M. Kumarraja, P. Pale, J. Sommer, Chem. Eur.
J. 14 (2008) 6713–6721.
[27] V. Bénéteau, A. Olmos, T. Boningari, J. Sommer, P. Pale, Tetrahedron Lett. 51
(2010) 3673–3677.
[28] M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger, M. Robitzer, F. Quignard,
F. Taran, Angew. Chem. Int. Ed. 48 (2009) 5916–5920.
Fig. 7. Loading and sizes of the pores.