M. Kurosumi et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5282–5285
5285
9. Petit, A.; Bihel, F.; Alves da Costa, C.; Pourquie, O.; Checler, F.; Kraus, J. L. Nat.
Cell Biol. 2001, 3, 507.
dependent inhibitory activity for both Ab40 and Ab42-generating
activities without affecting Notch signaling. An -alkyl substituent
was required for potent -secretase-inhibitory activity, because
a
10. (a) Weggen, S.; Eriksen, J. L.; Das, P.; Sagi, S. A.; Wang, R.; Pietrzik, C. U.; Findlay,
K. A.; Smith, T. E.; Murphy, M. P.; Bulter, T.; Kang, D. E.; Marquez-Sterling, N.;
Golde, T. E.; Koo, E. H. Nature 2001, 414, 212; (b) Kukar, T.; Murphy, M. P.;
Eriksen, J. L.; Sagi, S. A.; Weggen, S.; Smith, T. E.; Ladd, T.; Khan, M. A.; Kache, R.;
Beard, J.; Dodson, M.; Merit, S.; Ozols, V. V.; Anastasiadis, P. Z.; Das, P.; Fauq, A.;
Koo, E. H.; Golde, T. E. Nat. Med. 2005, 11, 545; (c) Kukar, T. L.; Ladd, T. B.; Bann,
M. A.; Fraering, P. C.; Narlawar, R.; Maharvi, G. M.; Healy, B.; Chapman, R.;
Welzel, A. T.; Price, R. W.; Moore, B.; Rangachari, V.; Cusack, B.; Eriksen, J.;
Jansen-West, K.; Verbeeck, C.; Yager, D.; Eckman, C.; Ye, W.; Sagi, S.; Cottrell, B.
A.; Torpey, J.; Rosenberry, T. L.; Fauq, A.; Wolfe, M. S.; Schmidt, B.; Walsh, D. M.;
Koo, E. H.; Golde, T. E. Nature 2008, 453, 925.
c
18b and 18c exhibited more potent
c-secretase inhibitory activity
than 18a. The IC50s for Ab40,
and Notch are calculated to
Ab42
32.7 lM, 22.4 lM and >100 lM, respectively. Based on the calcu-
lated IC50s, 18c exhibited more potent GSI activity than sulindac
sulfide, with a reduced effect on the Notch signaling pathway. Nev-
ertheless, further mechanistic study on the mode of action of these
compounds is still needed.
11. (a) Barten, D. M.; Guss, V. L.; Corsa, J. A.; Loo, A.; Hansel, S. B.; Zheng, M.;
Munoz, B.; Srinivasan, K.; Wang, B.; Robertson, B. J.; Polson, C. T.; Wang, J.;
Roberts, S. B.; Hendrick, J. P.; Anderson, J. J.; Loy, J. K.; Denton, R.; Verdoorn, T.
A.; Smith, D. W.; Felsenstein, K. M. J. Pharmacol. Exp. Ther. 2005, 312, 635; (b)
Kreft, A.; Harrison, B.; Aschmies, S.; Atchison, K.; Casebier, D.; Cole, D. C.;
Diamantidis, G.; Ellingboe, J.; Hauze, D.; Hu, Y.; Huryn, D.; Jin, M.; Kubrak, D.;
Lu, P.; Lundquist, J.; Mann, C.; Martone, R.; Moore, W.; Oganesian, A.; Porte, A.;
Riddell, D. R.; Sonnenberg-Reines, J.; Stock, J. R.; Sun, S. C.; Wagner, E.; Woller,
K.; Xu, Z.; Zhou, H.; Steven Jacobsen, J. Bioorg. Med. Chem. Lett. 2008, 18, 4232.
12. Shelton, C. C.; Zhu, L.; Chau, D.; Yang, L.; Wang, R.; Djaballah, H.; Zheng, H.; Li,
Y. M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20228.
13. (a) Kasuga, J.; Yamasaki, D.; Ogura, K.; Shimizu, M.; Sato, M.; Makishima, M.;
Doi, T.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. Lett. 2008, 18, 1110; (b)
Kasuga, J.; Nakagome, I.; Aoyama, A.; Sako, K.; Ishizawa, M.; Ogura, M.;
Makishima, M.; Hirono, S.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. 2007,
15, 5177; (c) Kasuga, J.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. Lett.
2006, 16, 771; (d) Kasuga, J.; Yamasaki, D.; Araya, Y.; Nakagawa, A.; Makishima,
M.; Doi, T.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. 2006, 14, 8405.
14. (a) Isoo, N.; Sato, C.; Miyashita, H.; Shinohara, M.; Takasugi, N.; Morohashi, Y.;
Tsuji, S.; Tomita, T.; Iwatsubo, T. J. Biol. Chem. 2007, 282, 12388; (b) Kopan, R.;
Schroeter, E. H.; Weintraub, H.; Nye, J. S. Proc. Natl. Acad. Sci. U.S.A. 1996, 93,
1683; (c) Strobl, L. J.; Hofelmayr, H.; Stein, C.; Marschall, G.; Brielmeier, M.;
Laux, G.; Bornkamm, G. W.; Zimber-Strobl, U. Immunobiology 1997, 198, 299;
(d) Imamura, Y.; Watanabe, N.; Umezawa, N.; Iwatsubo, T.; Kato, N.; Tomita, T.;
Higuchi, T. J. Am. Chem. Soc. 2009, 131, 7353.
15. Dovey, H. F.; John, V.; Anderson, J. P.; Chen, L. Z.; de Saint, A. P.; Fang, L. Y.;
Freedman, S. B.; Folmer, B.; Goldbach, E.; Holsztynska, E. J.; Hu, K. L.; Johnson-
Wood, K. L.; Kennedy, S. L.; Kholodenko, D.; Knops, J. E.; Latimer, L. H.; Lee, M.
Z.; Lieberburg, I. M.; Motter, R. N.; Mutter, L. C.; Nietz, J.; Quinn, K. P.; Sacchi, K.
L.; Seubert, P. A.; Shopp, G. M.; Thorsett, E. D.; Tung, J. S.; Wu, J.; Yang, S.; Yin, C.
T.; Schenk, D. B.; May, P. C.; Altstiel, L. D.; Bender, M. H.; Boggs, L. N.; Britton, T.
C.; Clemens, J. C.; Czilli, D. L.; Dieckman-McGinty, D. K.; Droste, J. J.; Fuson, K.
S.; Gitter, B. D.; Hyslop, P. A.; Johnstone, E. M.; Li, W. Y.; Little, S. P.; Mabry, T. E.;
Miller, F. D.; Audia, J. E. J. Neurochem. 2001, 76, 173.
16. Kasuga, J.; Makishima, M.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. Lett.
2006, 16, 554.
17. Nomura, M.; Tanase, T.; Ide, T.; Tsunoda, M.; Suzuki, M.; Uchiki, H.; Murakami,
K.; Miyachi, H. J. Med. Chem. 2003, 46, 3581.
In conclusion, we found that the phenylpropanoic acid with a
CH2NHCO linker and cinnamic acid with a CH2NHCO linker can
be employed as scaffolds for the creation of structurally novel
NS-GSIs. Moreover, we identified phenylpropanoic acid with a
CONHCH2 linker as a Notch-specific GSI. Notch inhibition is consid-
ered to be effective against cancer cell induction and/or prolifera-
tion in
a
subset of malignant neoplasms.19 Therefore, such
compounds could be useful as a scaffold for developing agents to
treat Notch-dependent cancer. Further chemical modification
studies are on-going.
Acknowledgements
This work is supported in part by Grants-in-Aid for Young Sci-
entists (S) from Japan Society for the Promotion of Science (JSPS),
Scientific Research on Priority Areas ‘Research on Pathomecha-
nisms of Brain Disorders’ from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), by Targeted Proteins Re-
search Program of the Japan Science and Technology Corporation
(JST) and by Core Research for Evolutional Science and Technology
of JST, Japan.
References and notes
1. Tomita, T. Expert Rev. Neurother. 2009, 9, 661.
2. Takasugi, N.; Tomita, T.; Hayashi, I.; Tsuruoka, M.; Niimura, M.; Takahashi, Y.;
Thinakaran, G.; Iwatsubo, T. Nature 2003, 422, 438.
3. Jarrett, J. T.; Berger, E. P.; Lansbury, P. T., Jr. Biochemistry 1993, 32, 4693.
4. Roher, A. E.; Lowenson, J. D.; Clarke, S.; Woods, A. S.; Cotter, R. J.; Gowing, E.;
Ball, M. J. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 10836.
5. Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Neuron
1994, 13, 45.
6. Searfoss, G. H.; Jordan, W. H.; Calligaro, D. O.; Galbreath, E. J.; Schirtzinger, L.
M.; Berridge, B. R.; Gao, H.; Higgins, M. A.; May, P. C.; Ryan, T. P. J. Biol. Chem.
2003, 278, 46107.
7. Wong, G. T.; Manfra, D.; Poulet, F. M.; Zhang, Q.; Josien, H.; Bara, T.; Engstrom,
L.; Pinzon-Ortiz, M.; Fine, J. S.; Lee, H. J.; Zhang, L.; Higgins, G. A.; Parker, E. M. J.
Biol. Chem. 2004, 279, 12876.
18. Takahashi, Y.; Hayashi, I.; Tominari, Y.; Rikimaru, K.; Morohashi, Y.; Kan, T.;
Natsugari, H.; Fukuyama, T.; Tomita, T.; Iwatsubo, T. J. Biol. Chem. 2003, 278,
18664.
19. (a) Sikandar, S. S.; Pate, K. T.; Anderson, S.; Dizon, D.; Edwards, R. A.;
Waterman, M. L.; Lipkin, S. M. Cancer Res. 2010, 70, 1469; (b) Tammam, J.;
Ware, C.; Efferson, C.; O’Neil, J.; Rao, S.; Qu, X.; Gorenstein, J.; Angagaw, M.;
Kim, H.; Kenific, C.; Kunii, K.; Leach, K. J.; Nikov, G.; Zhao, J.; Dai, X.; Hardwick,
J.; Scott, M.; Winter, C.; Bristow, L.; Elbi, C.; Reilly, J. F.; Look, T.; Draetta, G.; Van
der Ploeg, L.; Kohl, N. E.; Strack, P. R.; Majumder, P. K. Br. J. Pharmacol. 2009, 58,
1183.
8. Milano, J.; McKay, J.; Dagenais, C.; Foster-Brown, L.; Pognan, F.; Gadient, R.;
Jacobs, R. T.; Zacco, A.; Greenberg, B.; Ciaccio, P. J. Toxicol. Sci. 2004, 82, 341.