ORGANIC
LETTERS
2010
Vol. 12, No. 21
5032-5035
Mechanistic Insight into Direct
Arylations with Ruthenium(II)
Carboxylate Catalysts
Lutz Ackermann,* Rube´n Vicente, Harish K. Potukuchi, and Valentina Pirovano
Institut fuer Organische und Biomolekulare Chemie, Georg-August-UniVersita¨t,
Tammannstrasse 2, 37077 Go¨ttingen, Germany
Received September 13, 2010
ABSTRACT
Mechanistic studies revealed ruthenium-catalyzed direct arylations to proceed through reversible C-H bond activation and subsequent rate-
limiting oxidative addition with aryl halides, which led to the development of widely applicable well-defined ruthenium(II) carboxylate catalysts.
Transition metal-catalyzed direct arylations of (hetero)are-
nes are increasingly viable alternatives to traditional cross-
coupling reactions, which allow for an overall streamlining
of arene syntheses.1,2 In recent years, ruthenium complexes
have emerged as particularly attractive tools for C-H bond
functionalizations with inexpensive3,4 easily accessible aryl-
ating reagents.5,6 Despite this significant progress, detailed
experimental mechanistic studies on the working mode of
ruthenium catalysts in direct arylations with organic halides
are unfortunately not available. Thus, several distinct reaction
manifolds continue to be considered for these transforma-
tions. For instance, a rationale was put forward that involved
an initial oxidative addition of aryl halides7 to ruthenium(II)
complexes and a subsequent C-H bond functionalization.8
On the contrary, computational DFT calculations were
performed for direct arylations with in situ generated
ruthenium(II) catalyst in NMP as solvent.9 On the basis of
these studies and comparable isolated yields with differently
(1) Selected recent reviews: (a) Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. ReV. 2010, 110, 624–655. (b) Ackermann, L.; Vicente, R.;
Kapdi, A. Angew. Chem., Int. Ed 2009, 48, 9792–9826. (c) Thansandote,
P.; Lautens, M. Chem.sEur. J. 2009, 15, 5874–5883. (d) Kakiuchi, F.;
Kochi, T. Synthesis 2008, 3013–3039. (e) Ackermann, L. Synlett 2007, 507–
(6) Representative examples: ArOTs: (a) Ackermann, L.; Althammer,
A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619–2622. ArCl: (b)
´
526. (f) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200–205
(2) Ackermann, L. Modern Arylation Methods; Wiley-VCH: Weinheim,
Germany, 2009
.
Ackermann, L.; Born, R.; Alvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007,
46, 6364–6367. (c) Pozgan, F.; Dixneuf, P. H. AdV. Synth. Catal. 2009,
351, 1737–1743. (d) Ackermann, L.; Born, R.; Vicente, R. ChemSusChem
2009, 2, 546–549. (e) In the presence of H2O: Ackermann, L. Org. Lett.
2005, 7, 3123–3125.
.
(3) For selected recent examples of ruthenium-catalyzed direct arylations
with aryl bromides, see: (a) Oi, S.; Sasamoto, H.; Funayama, R.; Inoue, Y.
Chem. Lett. 2008, 37, 994–995. (b) Ackermann, L.; Althammer, A.; Born,
R. Tetrahedron 2008, 64, 6115–6124. (c) Oi, S.; Funayama, R.; Hattori,
T.; Inoue, Y. Tetrahedron 2008, 64, 6051–6059. (d) Ackermann, L.;
Althammer, A.; Born, R. Synlett 2007, 2833–2836, and references cited
(7) Grounds, H.; Anderson, J. C.; Hayter, B.; Blake, A. J. Organome-
tallics 2009, 28, 5289–5292.
(8) (a) Luo, N.; Yu, Z. Chem.sEur. J. 2010, 16, 787–791. (b) Oi, S.;
Sakai, K.; Inoue, Y. Org. Lett. 2005, 7, 4009–4011. (c) Oi, S.; Fukita, S.;
Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579–
2581.
therein
.
(4) For select recent examples of ruthenium-catalyzed direct arylations
with boron-based arylating reagents, see: (a) Kitazawa, K.; Kochi, T.; Sato,
M.; Kakiuchi, F. Org. Lett. 2009, 11, 1951–1954. (b) Park, Y. J.; Jo, E.-
A.; Jun, C.-H. Chem. Commun. 2005, 1185–1187, and references cited
¨
(9) (a) Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras,
F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156–1157.
See also: (b) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am.
Chem. Soc. 2005, 127, 13754–13755. (c) Boutadla, Y.; Davies, D. L.;
Macgregor, S. A.; Poblador-Bahamonde, A. I. Dalton Trans. 2009, 5820–
5831.
therein
.
(5) A review: Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292,
211–229
.
10.1021/ol102187e 2010 American Chemical Society
Published on Web 10/07/2010