Journal of the American Chemical Society
Article
Preparative Scale Procedure for the Synthesis of Trypto-
phan 7c. To a flame-dried flask under nitrogen containing freshly
activated powdered 4 Å molecular sieves (200 wt %) was added 2-
phenylindole (1a, 1.00 g, 5.20 mmol, 1.00 equiv), methyl 2-
acetamidoacrylate (2c, 890 mg, 6.20 mmol, 1.20 equivs), and (R)-
3,3′-dibromo-BINOL (9f, 457 mg, 1.00 mmol, 0.20 equivs). The flask
was charged with 40 mL DCM and SnCl4 (1 M in DCM, 5.20 mL,
5.20 mmol, 1.00 equiv) was added. The reaction was stirred at room
temperature for 2 h, then quenched by addition of 1 M HCl (50 mL).
The aqueous layer was extracted with EtOAc (2 × 50 mL) and the
combined organic layers were washed with saturated aqueous
NaHCO3 (50 mL), dried (Na2SO4), filtered, and concentrated. The
crude residue was purified by silica gel chromatography (40:60 to
100:0 EtOAc:hexanes) to yield 1.33 g (77% yield) of 7c as a pale
yellow foam. The enantiomeric excess was determined to be 93% by
chiral SFC analysis (Chiracel AD-H, 2.5 mL/min, 30% IPA in CO2, λ
= 254 nm): tR(major) = 5.7 min tR(minor) = 6.9 min.
Blount, J. F.; Sun, R. C.; Zawoiski, S.; Valentine, D. Jr. J. Org. Chem.
1980, 45, 2995.
(8) Repka, L. M.; Ni, J.; Reisman, S. E. J. Am. Chem. Soc. 2010, 132,
14418.
(9) (a) Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am.
Chem. Soc. 2003, 125, 24. (b) Nakamura, S.; Kaneeda, M; Ishihara, K.;
Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120. (c) Ishihara, K.;
Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996,
118, 12854. (d) Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem.
Soc. 1994, 116, 11179.
(10) For a review of combined acid catalysis, see: Yamamoto, H.;
Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44, 1924.
(11) The use of achiral Lewis acids to give racemic tryptophan
derivatives has been reported: (a) Gentilucci, L.; Cerisoli, L.; Marco, R.
D.; Tolomelli, A. Tetrahedron Lett. 2010, 51, 2576. (b) Angelini, E.;
Balsamini, C.; Bartoccini, F.; Lucarini, S.; Piersanti, G. J. Org. Chem.
2008, 73, 5654. (c) Blaser, G.; Sanderson, J. M.; Batsanov, A. S.;
Howard, J. A. K. Tetrahedron Lett. 2008, 49, 2795.
(12) (a) Sibi, M. P.; Coulomb, J.; Stanley, L. M. Angew. Chem., Int.
Ed. 2008, 47, 9913. (b) Fu, N.; Zhang, L.; Li, J.; Luo, S.; Cheng, J.-P.
Angew. Chem., Int. Ed. 2011, 50, 11451.
ASSOCIATED CONTENT
* Supporting Information
■
S
Information regarding materials and methods, and NMR
spectra of compounds from this study. This material is available
(13) After the submission of this manuscript, the use of indole
nucleophiles for tandem Friedel−Crafts conjugate addition/asymmet-
ric protonation was reported. See ref 12b.
(14) Non-Friedel−Crafts conjugate addition/protonation reactions:
(a) Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int. Ed.
2011, 50, 1410. (b) Poisson, T.; Yamashita, Y.; Kobayashi, S. J. Am.
Chem. Soc. 2010, 132, 7890. (c) Morita, M; Drouin, L.; Motoki, R.;
Kimura, Y.; Fujimori, I.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2009, 131, 3858. (d) Navarre, L.; Martinez, R. M.; Genet, J.-P.; Darses,
S. J. Am. Chem. Soc. 2008, 130, 6159. (e) Leow, D.; Lin, S.; Chittimalla,
S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed. 2008, 47, 5641.
(f) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc.
2007, 129, 768. (g) Sibi, M. P.; Tatamidani, H.; Patil, K. Org. Lett.
2005, 7, 2571. (h) Navarre, L.; Darses, S.; Genet, J.-P. Angew. Chem.,
Int. Ed. 2004, 43, 719. (i) Moss, R. J.; Wadsworth, K. J.; Chapman, C.
J.; Frost, C. G. Chem. Commun. 2004, 1984. (j) Hamashima, Y.; Somei,
H.; Shimura, Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861.
(15) A radical conjugate addition of alkyl halides to 2-amidoacrylates
followed by hydrogen atom transfer to prepare α-amino acids with
moderate enantioselectivity has been reported. See: Sibi, M. P.; Asano,
Y.; Sausker, J. B. Angew. Chem., Int. Ed. 2001, 40, 1293.
(16) Seminal examples of asymmetric Friedel−Crafts conjugate
additions of unactivated indoles to set stereogenic centers in the β-
position: (a) Boersma, A. J.; Feringa, B. L.; Roelfes, G. Angew. Chem.,
Int. Ed. 2009, 48, 3346. (b) Rueping, M.; Nachtsheim, B. J.; Moreth, S.
A.; Bolte, M. Angew. Chem., Int. Ed. 2008, 47, 593. (c) Evans, D. A.;
Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942.
(d) Palomo, C.; Oiarbide, M; Kardak, B. G.; Garcia, J. M.; Linden, A. J.
Am. Chem. Soc. 2005, 127, 4154. (e) Evans, D. A.; Scheidt, K. A.;
Fandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125,
10780. (f) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002,
124, 1172. (g) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030.
(h) Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2001, 40, 160.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Prof. Brian Stoltz, Dr. Scott Virgil, and the Caltech
Center for Catalysis and Chemical Synthesis for access to
analytical equipment, and Dr. David VanderVelde for assistance
with NMR structure determination. Fellowship support was
provided by the NSF (M. E. K., Graduate Research Fellowship
under Grant No. DGE-1144469) and the ACS Division of
Organic Chemistry (L.M.R., sponsored by Genentech). Nadine
Currie is acknowledged for assistance in the preparation of
several indole substrates. Financial support from the California
Institute of Technology, the NIH (NIGMS RGM097582A),
and the donors of the ACS Petroleum Research Foundation are
gratefully acknowledged.
REFERENCES
■
(1) For example, tadalafil: Daugan, A.; Grondin, P.; Ruault, C. C.; Le
Monnier de Gouville, A.-C.; Coste, H.; Linget, J. M.; Kirilovsky, J.;
Hyafil, F. O.; Labaudiniere, R. J. Med. Chem. 2003, 46, 4533.
(2) (a) Royer, C. A. Chem. Rev. 2006, 106, 1769. For a specific
example, see: (b) Lepthien, S.; Hoesl, M. G.; Merkel, L.; Budisa, N.
Proc. Natl. Acad. Sci., U.S.A. 2008, 105, 16095.
(3) Zhong, W.; Gallivan, J. P.; Zhang, Y.; Li, L.; Lester, H. A.;
Dougherty, D. A. Proc. Natl. Acad. Sci., U.S.A. 1998, 95, 12088.
(4) (a) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.; MacMillan, D.
W. C. Proc. Nat. Acad. Sci., U.S.A. 2004, 101, 5482−7. (b) Ishihara, K.;
Fushimi, N.; Akakura, M. Acc. Chem. Res. 2007, 40, 1049.
(5) Xu, Z.; Zhang, F.; Zhang, L.; Jia, Y. Org. Biomol. Chem. 2011, 9,
2512.
(17) See Supporting Information.
(18) 9f is easily prepared on multi-gram scale in 3 steps from (R)-
BINOL. See: Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc.
2003, 125, 5139.
(19) The absolute stereochemistry of 7c was assigned by comparison
of the optical rotation to previously reported literature data: Ruiz-
Rodríguez, J.; Albericio, F.; Lavilla, R. Chem.Eur. J. 2010, 16, 1124.
(20) Alternatively, the corresponding N-substituted tryptophan
products are accessible from the corresponding N-protio products.
(21) The major byproduct of this reaction was determined to be an
indole dimer, formed in 30% yield. See Supporting Information.
(22) Endo, Y.; Shudo, K.; Itai, A.; Hasegawa, M.; Sakai, S.-I.
Tetrahedron 1986, 42, 5905.
(6) Artman, G. D.; Grubbs, A. W.; Williams, R. M. J. Am. Chem. Soc.
2007, 129, 6336.
(7) Existing catalytic asymmetric methods: (a) Zheng, B.-H.; Ding,
C.-H.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2010, 12, 1688. (b) Sui, Y.; Liu,
L.; Zhao, J.-L.; Wang, D.; Chen, Y.-J. Tetrahedron 2007, 63, 5173.
(c) Castle, S. L.; Srikanth, G. S. C. Org. Lett. 2003, 5, 3611. (d) Drury,
W. J.; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. J. Am. Chem. Soc.
1998, 120, 11006. Asymmetric hydrogenation: (e) Townsend, J. M.;
5136
dx.doi.org/10.1021/ja209390d | J. Am. Chem. Soc. 2012, 134, 5131−5137