C O M M U N I C A T I O N S
(13) For the incidence of the interception of the Bergman cyclization through
intramolecular hydrogen abstraction from an activated position, see:
Baroudi, A.; Mauldin, J.; Alabugin, I. V. J. Am. Chem. Soc. 2010, 132,
967.
The observation of a higher ee for the cis diastereomers than
for the trans ones probably reflects the variation of steric crowding
all along the pathways (either conrotatory or disrotatory) leading
to these isomers.
(14) For the concept of “self-regeneration of a chiral center” and a pioneering
example of memory of chirality, see: (a) Seebach, D.; Sting, A. R.;
Hoffmann, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2708. (b) Seebach,
D.; Wasmuth, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 971.
(15) For recent examples, see: (a) Branca, M.; Pena, S.; Guillot, R.; Gori, D.;
Alezra, V.; Kouklovsky, C. J. Am. Chem. Soc. 2009, 131, 10711. (b) Branca,
M.; Gori, D.; Guillot, R.; Alezra, V.; Kouklovsky, C. J. Am. Chem. Soc.
2008, 130, 5864. (c) Ghorai, M. K.; Ghosh, K.; Yadav, A. K. Tetrahedron
Lett. 2009, 50, 476. (d) Kawabata, T.; Moriyama, K.; Kawakami, S.;
Tsubaki, K. J. Am. Chem. Soc. 2008, 130, 4153. (e) Kawabata, T.; Matsuda,
S.; Kawakami, S.; Monguchi, D.; Moriyama, K. J. Am. Chem. Soc. 2006,
128, 15394. (f) Kawabata, T.; Majumdar, S.; Tsubaki, K.; Monguchi, D.
Org. Biomol. Chem. 2005, 3, 1609. (g) Carlier, P. R.; Zhao, H.; De Guzman,
J.; Lam, P.C.-H. J. Am. Chem. Soc. 2003, 125, 11482. (h) Bonache, M. A.;
Gerona-Navarro, G.; Garcia-Aparicio, C.; Alias, M.; Martin-Martinez, M.;
Garcia-Lopez, M.-T.; Lopez, P.; Cativiela, C.; Gonzalez-Muniz, R. Tet-
rahedron: Asymmetry 2003, 14, 2161. (i) Kawabata, T.; Kawakami, S.;
Majumdar, S. J. Am. Chem. Soc. 2003, 125, 13012. For previous references,
the reader is referred to refs 6 and 7.
In conclusion, the four-step cascade rearrangement of enediynes
of type 1, involving successively 1,3-proton shift, Saito-Myers
cyclization, 1,5-hydrogen atom transfer, and intramolecular coupling
of the resulting biradical, was shown to occur with memory of
chirality, which opens routes to the asymmetric synthesis of
heterocyclic R-aminoester derivatives with a quaternary stereogenic
center. It is remarkable that, in this process, the phenomenon of
MOC led to high ee’s at a temperature as high as 80 °C. Mechanistic
studies, including theoretical approach and introduction of structural
diversity, are currently under investigation. New results will be
reported in due course.
Acknowledgment. We thank Prof. C. Roussel for fruitful
discussions and the ANR (JCJC MOCER2) for financial support.
(16) Matsumura, Y.; Shirakawa, Y.; Satoh, Y.; Umino, M.; Tanaka, T.; Maki,
T.; Onomura, O. Org. Lett. 2000, 2, 1689.
(17) (a) Giese, B.; Wettstein, P.; Stahelin, C.; Barbosa, F.; Neuburger, M.;
Zehnder, M.; Wessig, P. Angew. Chem., Int. Ed. 1999, 38, 2586. (b)
Sinicropi, A.; Barbosa, F.; Basosi, R.; Giese, B.; Olivucci, M. Angew.
Chem., Int. Ed. 2005, 44, 2390. (c) Curran, D. P.; Liu, W.; Chen, C. H.-T.
J. Am. Chem. Soc. 1999, 121, 11012. (d) Schmalz, H.-G.; Koning, C. B. D.;
Bernicke, D.; Siegel, S.; Pfletschinger, A. Angew. Chem., Int. Ed. 1999,
38, 1620. (e) Buckmelter, A. J.; Kim, A. I.; Rychnovsky, S. D. J. Am.
Chem. Soc. 2000, 122, 9386. (f) Dalgard, J. E.; Rychnovsky, S. D. Org.
Lett. 2004, 6, 2713. (g) Griesbeck, A. G.; Kramer, W.; Lex, J. Angew.
Chem., Int. Ed. 2001, 40, 577. (h) Resendiz, M. J. E.; Family, F.; Fuller,
K.; Campos, L. M.; Khan, S. I.; Lebedeva, N. V.; Forbes, M. D. E.; Garcia-
Garibay, M. A. J. Am. Chem. Soc. 2009, 131, 8425. (i) Sakamoto, M.;
Kawanishi, H.; Mino, T.; Fujita, T. Chem. Commun. 2008, 2132. (j)
Sakamoto, M.; Kawanishi, H.; Mino, T.; Kasashima, Y.; Fujita, T. Chem.
Commun. 2006, 4608.
Supporting Information Available: Experimental procedures,
characterization data, HPLC analyses, NMR spectra for all new
compounds, computational details, and X-ray data for (3S*,4R*)-2c,
trans-2d, and cis-2d (PDF, CIF). This material is available free of
References
(1) For selected relevant references, see: (a) Smith, A. L.; Nicolaou, K. C.
J. Med. Chem. 1996, 39, 2103, and references therein. (b) Nicolaou, K. C.;
Dai, W. M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387, and references
therein. (c) Nicolaou, K. C.; Dai, W. M.; Tsay, S. C.; Estevez, V. A.;
Wrasidlo, W. Science 1992, 256, 1172. (d) Ahlert, J.; Shepard, E.;
Lomovskaya, N.; Zazopoulos, E.; Staffa, A.; Bachmann, B. O.; Huang,
K.; Fonstein, L.; Czisny, A.; Whitwam, R. E.; Farnet, C. M.; Thorson,
J. S. Science 2002, 297, 1173.
(18) For an example of stereochemical memory in alkene radical cation/anion
contact ion pairs, see: Crich, D.; Ranganathan, K. J. Am. Chem. Soc. 2005,
125, 9924.
(19) For a discussion of theoretical methods suitable for the calculations of singlet
biradicals, see: Gra¨fenstein, J.; Kraka, E.; Filatov, M.; Cremer, D. Int. J.
Mol. Sci. 2002, 3, 360.
(20) There are no data for the rotational barrier in such a radical; however, a 17
kcal mol-1 barrier was measured by ESR by Ru¨chardt et al. for pivaloyl
dimethylaminomethyl radical: Welle, F. M.; Beckhaus, H.-D.; Ru¨chardt,
C. J. Org. Chem. 1997, 62, 552. On the basis of this rotational barrier, a
rate constant of 438 s-1 was estimated for the racemization of the
captodative radical center, at 80 °C, through rotation around bond R. Typical
rotational barriers around sp2C -sp3C bonds are about 7.5 kcal mol-1. This
means that rotation around bond ꢀ is nearly 6 orders of magnitude faster
than racemization.
(21) The structures’ assignment was based both on the chemical shift of the
proton in position R relative to the tosyl group, which is more deshielded
when it is cis with respect to the carbethoxy group (δ ) 4.74 ppm in
(3S,4R)-2c; δ ) 4.50 ppm in (3S,4S)-2c), and on the chemical shift of the
carbon of the methyl group attached to the quaternary center that is more
shielded in (3S,4R)-2c (δ ) 23.4 ppm), than in (3S,4S)-2c (δ ) 29.5 ppm).
The crystal structure obtained for racemic (3S*,4R*)-2c confirmed this
assignment.
(22) The temperature was increased to 80 °C for the rearrangement to be
completed in an acceptable time. At 65 °C, the starting material was not
totally consumed after 24 h and the ee’s of the products were not
significantly modified.
(23) In the case of 1c, the use of potassium carbonate resulted in the formation
of a mixture of rearranged products that could not be identified.
(24) The cis and trans structures were assigned from dihedral angles determined
from Chem3D models. In the cis isomer, one dihedral angle in the CH2-
CH2 moiety of the γ-lactam ring is very close to 90°. This explains why
one vicinal coupling constant in the four-spin system is zero. This leads to
dd splitting patterns for the related protons. Conversely more complex ddd
patterns are observed in the spectrum of the trans isomer.
(2) Jones, R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.
(3) (a) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111,
8057. (b) Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1989, 111,
9130. (c) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron
Lett. 1989, 30, 4995.
(4) For the competitive rearrangement of Schmittel, see: Schmittel, M.;
Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36, 4975.
(5) For reviews, see: (a) Kar, M.; Basak, A. Chem. ReV. 2007, 107, 2861. (b)
Rawat, D. S.; Zaleski, J. M. Synlett 2004, 393. (c) Wang, K. K. Chem.
ReV. 1996, 96, 207. (d) Grissom, J. W.; Gunawardena, G. U.; Klingberg,
D.; Huang, D. Tetrahedron 1996, 52, 6453.
(6) Fuji, K.; Kawabata, T. Chem.sEur. J. 1998, 4, 373.
(7) For general reviews and more precise definitions, see also: (a) Zhao, H.;
Hsu, D. C.; Carlier, P. R. Synthesis 2005, 1. (b) Kawabata, T.; Fuji, K. In
Topics in Stereochemistry; Denmark, S. E., Ed.; Wiley and Sons Inc.; New
York, 2003, Vol. 23, pp 175-205.
(8) Grissom, J. W.; Klingberg, D.; Huang, D.; Slattery, B. J. J. Org. Chem.
1997, 62, 603, and references therein.
(9) (a) Li, H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003, 68, 5512. (b)
Tarli, A.; Wang, K. K. J. Org. Chem. 1997, 62, 8841. (c) Wang, K. K.;
Wang, Z.; Tarli, A.; Gannett, P. J. Am. Chem. Soc. 1996, 118, 10783. (d)
Wang, K. K.; Zhang, H.-R.; Petersen, J. L. J. Org. Chem. 1999, 64, 1650.
(10) A similar cascade leading to a tetracarbocyclic aromatic compound via a
triarylmethyl radical intermediate was reported in ref 9d.
(11) Triethylamine was also tested, but side products were observed by NMR
in the 1H spectrum of the crude mixture. It led to only 52% isolated yield
at the same temperature within 5 h.
(12) The 1.8 Hz vicinal coupling constant between the CH group protons in the
heterocyclic ring indicates an ax-eq or eq-eq relationship. The second
proposal, implying a trans relationship, seems more likely.
JA106668D
9
14744 J. AM. CHEM. SOC. VOL. 132, NO. 42, 2010