M.-A. Hiebel et al. / Tetrahedron Letters 51 (2010) 5091–5093
15. Lowe, J. T.; Panek, J. S. Org. Lett. 2005, 7, 3231–3234.
5093
16. Wrona, I. E.; Lowe, J. T.; Turbyville, T. J.; Johnson, T. R.; Beignet, J.; Beutler, J. A.;
Panek, J. S. J. Org. Chem. 2009, 74, 1897–1916.
17. Hiebel, M.-A.; Pelotier, B.; Goekjian, P.; Piva, O. Eur. J. Org. Chem. 2008, 713–
720.
O
2
CO2Et
1) i. NMO, OsO4 cat.
18. Hiebel, M.-A.; Pelotier, B.; Lhoste, P.; Piva, O. Synlett 2008, 1202–1204.
19. Ogibin, Y. N.; Starostin, E. K.; Aleksandrov, A. V.; Pivnitsky, K. K.; Nikishin, G. I.
Synthesis 1994, 901–903.
20. Bull, S. D.; Davies, S. G.; Jones, S.; Sanganee, H. J. J. Chem. Soc., Perkin Trans. 1
1999, 387–398.
ii. NaIO4
92% (2 steps)
2) allylbromide, Zn
THF/NH4Cl aq
OH
21. (a) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186–
8190; (b) Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Park, J. C. J. Org. Chem.
1990, 55, 4109–4117.
CO2Et
77%
O
14
22. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287.
23. Treatment of
x-silyloxy-a,b-unsaturated esters under basic conditions (TBAF)
(COCl)2, DMSO, Et3N
CH2Cl2, -78°C to rt
is known to yield tetrahydropyrans by a tandem deprotection/cyclization
process. See, for example: (a) Horita, K.; Hachiya, S.; Nagasawa, M.; Hikota, M.;
Yonemitsu, O. Synlett 1994, 38–40; (b) Noda, A.; Aoyagi, S.; Machinaga, N.;
Kibayashi, C. Tetrahedron Lett. 1994, 35, 8235–8240.
O
CO2Et
24. Banwell, M. G.; Bui, C. T.; Pham, H. T. T.; Simpson, G. W. J. Chem. Soc., Perkin
Trans. 1 1996, 967–969.
25. Bates, R. W.; Palani, K. Tetrahedron Lett. 2008, 49, 2832–2834.
O
1
26. Preliminary experiments on
a 1/1 diastereomeric mixture of alcohols 3
Scheme 5. Completion of the fragment C1–C13.
performed at ꢀ78 °C with NaH and t-BuOK, respectively, showed that higher
amounts of the desired isomer was obtained in the presence of t-BuOK.
27. To a solution of alcohol 3 (0.27 mmol, 60 mg) in THF (2 mL) at ꢀ78 °C was
added t-BuOK (0.29 mmol, 33 mg). After 25 min stirring at ꢀ78 °C, a saturated
solution of NH4Cl (3 mL) was added and the mixture warmed up to rt.
Extraction was carried out with Et2O (3 ꢁ 3 mL). The organic phase was dried
over MgSO4, filtered, and was concentrated in vacuo. The purification of the
residue was done by flash column chromatography (hexanes/EtOAc, 98:2)
furnished cycloadduct 2 in 72% yield (0.19 mmol, 43 mg) as a colorless oil.
Rf = 0.7 (hexanes/EtOAc, 90:10). 1H NMR d 0.81 (d, J = 7.0 Hz, 3H), 1.26 (t,
J = 7.1 Hz, 3H), 1.27–1.40 (m, 2H), 1.61–1.67 (m, 2H), 1.86–1.98 (m, 1H), 2.07–
2.26 (m, 2H), 2.31 (dd, JAB = 14.0 Hz, J = 4.5 Hz, 1H), 2.71 (dd, JAB = 14.0 Hz,
J = 10.6 Hz, 1H), 3.60–3.68 (m, 1H), 4.14 (qt, J = 7.1, 1.1 Hz, 2H), 4.30 (dt,
J = 10.7, 4.7 Hz, 1H), 4.98 (br d, J = 10.4 Hz, 1H), 5.03 (br d, J = 17.5 Hz, 1H), 5.78
(ddt, J = 17.1, 10.2, 7.0 Hz, 1H). 13C NMR d 14.3, 16.7, 26.7, 30.3, 32.9, 33.2, 40.2,
triethylamine in this last step enabled the in situ isomerization of
the resulting
a,b-unsaturated ketone into conjugation to provide
target enone 1 in 77% yield.31
In conclusion, a diastereoselective synthesis of the C1–C13 frag-
ment of bistramide A has been achieved in 15 steps with a 16%
overall yield. The core-trisubstituted tetrahydropyran was ac-
cessed through a key oxa-Michael cyclization under kinetic condi-
tions to control its 2,6-trans relative stereochemistry.
60.5, 69.2, 74.2, 116.4, 135.3, 172.1. IR (film)
1438, 1370, 1285, 1191, 1711, 1037, 911 cmꢀ1
13H22O3Na+ [M+Na+] 249.1467, found 249.1468. a 2D5
½ ꢂ
m
3071, 2976, 2952, 2932, 1737,
HRMS (ESI) calcd for
¼ ꢀ60:4 (c = 0.98,
Acknowledgments
.
C
The authors are grateful to the European Community for fund-
ing this work (European Union FP6 Integrated Project No. LSHB-CT-
2004-503467 on protein kinases). We also thank CNRS and Univer-
sity Lyon1 for the financial support.
CHCl3). Isomer epi-2: isolated as a colorless oil (0.059 mmol, 13 mg, 22%).
Rf = 0.5 (hexanes/EtOAc, 95:5). 1H NMR d 0.82 (d, J = 6.4 Hz, 3H), 1.25 (t,
J = 7.1 Hz, 3H), 1.20–1.40 (m, 3H), 1.58–1.78 (m, 2H), 2.10 (dd, JAB = 14.2 Hz,
J = 6.4 Hz, 1H), 2.25 (dd, JAB = 14.2 Hz, J = 7.2 Hz, 1H), 2.35 (dd, JAB = 14.5 Hz,
J = 9.5 Hz, 1H), 2.60 (dd, JAB = 14.5 Hz, J = 3.5 Hz, 1H), 3.28–3.36 (m, 1H), 3.42
(td, J = 9.5, 3.5 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 4.96–5.06 (m, 2H), 5.78 (ddt,
J = 17.1, 10.2, 6.8 Hz, 1H).
References and notes
28. Gallagher, P. O.; McErlean, C. S. P.; Jacobs, M. F.; Watters, D. J.; Kitching, W.
Tetrahedron Lett. 2002, 43, 531–535.
29. Marton, D.; Stivanello, D.; Tagliavini, G. J. Org. Chem. 1996, 61, 2731–2737.
30. Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 4537–4538.
1. Gouiffes, D.; Moreau, S.; Helbecque, N.; Bernier, J. L.; Henichard, J. P.; Barbin, Y.;
Laurent, D.; Verbist, J. F. Tetrahedron 1988, 44, 451–459.
2. Biard, J. F.; Roussakis, C.; Kornprobst, J. M.; Gouiffes-Barbin, D.; Verbist, J. F.;
Cotelle, P.; Foster, M. P.; Ireland, C. M.; Debitus, C. J. Nat. Prod. 1994, 57, 1336–
1345.
31. To a solution of freshly distilled oxalyl chloride (0.09 mmol, 8
l
L) in dry DCM
(1.2 mL) cooled at ꢀ78 °C was added dry DMSO (0.19 mmol, 13
lL). After
15 min of stirring, a solution of alcohol 14 (0.078 mmol, 21 mg) in dry DCM
(0.8 mL) was added at ꢀ78 °C. The mixture was stirred for a further 20 min at
that temperature before adding dropwise a solution of freshly distilled Et3N
3. Sauviat, M. P.; Gouiffes-Barbin, D.; Ecault, E.; Verbist, J. F. Biochim. Biophys. Acta
1992, 1103, 109–114.
4. Pusset, J.; Maillere, B.; Debitus, C. J. Nat. Toxins 1996, 5, 1–6.
5. Gouiffes, D.; Juge, M.; Grimaud, N.; Welin, L.; Sauviat, M. P.; Barbin, Y.; Laurent,
D.; Roussakis, C.; Henichart, J. P.; Verbist, J. F. Toxicon 1988, 26, 1129–1136.
6. Riou, D.; Roussakis, C.; Robillard, N.; Biard, J. F.; Verbist, J. F. Biol. Cell 1993, 77,
261–264.
7. Griffiths, G.; Garrone, B.; Deacon, E.; Owen, P.; Pongracz, J.; Mead, G.; Bradwell,
A.; Watters, D.; Lord, J. Biochem. Biophys. Res. Commun. 1996, 222, 802–808.
8. Statsuk, A. V.; Bai, R.; Baryza, J. L.; Verma, V. A.; Hamel, E.; Wender, P. A.;
Kozmin, S. A. Nat. Chem. Biol. 2005, 1, 383–388.
9. Rizvi, S. A.; Tereshko, V.; Kossiakoff, A. A.; Kozmin, S. A. J. Am. Chem. Soc. 2006,
128, 3882–3883.
10. Rizvi, S. A.; Courson, D. S.; Keller, V. A.; Rock, R. S.; Kozmin, S. A. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 4088–4092.
(4 mmol, 550 lL) in DCM (2 mL). The reaction mixture was allowed to warm
up to rt and stirred for 24 h. The mixture was then diluted with DCM (10 mL)
and washed with saturated aqueous solutions of NaHCO3 (10 mL), NH4Cl
(10 mL), and NaCl (5 mL). The organic layer was dried over MgSO4, filtered, and
was concentrated in vacuo. The crude residue was purified by flash column
chromatography on silica gel (hexanes/EtOAc, 85:15) to yield enone
1
(0.060 mmol, 16 mg) as a colorless oil in 77% yield. Rf = 0.5 (hexanes/EtOAc,
80/20). 1H NMR d 0.81 (d, J = 7.0 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.27–1.43 (m,
2H), 1.59–1.78 (m, 2H), 1.87–1.95 (m, 1H), 1.89 (dd, J = 7.0, 1.7 Hz, 3H), 2.34
(dd, JAB = 14.5 Hz, J = 4.7 Hz, 1H), 2.51 (dd, JAB = 15.2 Hz, J = 6.2 Hz, 1H), 2.71
(dd, JAB = 14.5 Hz, J = 10.0 Hz, 1H), 2.78 (dd, JAB = 15.2 Hz, J = 6.4 Hz, 1H), 4.05–
4.32 (m, 3H), 4.28 (br dt, J = 9.8, 4.9 Hz, 1H), 6.11 (dq, J = 15.7, 1.7 Hz, 1H), 6.83
(dq, J = 15.7, 6.8 Hz, 1H). 13C NMR d 14.3, 16.7, 18.4, 26.6, 30.6, 32.8, 33.1, 45.9,
60.6, 66.7, 74.3, 132.6, 143.3, 172.0, 198.4. HRMS (ESI) calcd for C15H24O4Na+
11. Statsuk, A. V.; Liu, D.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 9546–9547.
12. Crimmins, M. T.; DeBaillie, A. C. J. Am. Chem. Soc. 2006, 128, 4936–4937.
13. Lowe, J. T.; Wrona, I. E.; Panek, J. S. Org. Lett. 2007, 9, 327–330.
14. Yadav, J. S.; Chetia, L. Org. Lett. 2007, 9, 4587–4589.
[M+Na+] 291.1572, found 291.1572. ½a 2D5
¼ ꢀ50:0 (c = 0.4, CHCl3). Literature:
ꢂ
½
a 2D5
ꢂ
¼ ꢀ54:0 (c = 0.1, CHCl3) for the acid derivative.16