(a) S. M. Nettles, K. Matos, E. R. Burkhardt, D. R. Rouda and J. A.
Corella, J. Org. Chem., 2002, 67, 2970; (b) X. Fu, T. L. McAllister, T.
K. Thiruvengadam, C. H. Tann and D. Su, Tetrahedron Lett., 2003,
44, 801; (c) J. Duquette, M. Zhang, L. Zhu and R. S. Reeves, Org.
Process Res. Dev., 2003, 7, 285.
6 A. Yamamura, S. Maruoka, J. Ohtsuka, T. Miyakawa, K. Nagata,
M. Kataoka, N. Kitamura, S. Shimizu and M. Tanokura, Acta
Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 2009, F65, 1145.
7 A.-R. G. D. Hidalgo, M. A. Akond, K. Kita, M. Kataoka and S.
Shimizu, Biosci., Biotechnol., Biochem., 2001, 65, 2785.
8 Y. Yasohara, N. Kizaki, J. Hasegawa, M. Wada, M. Kataoka and S.
Shimizu, Biosci., Biotechnol., Biochem., 2000, 64, 1430.
9 N. Kizaki, Y. Yasohara, J. Hasegawa, M. Wada, M. Kataoka and S.
Shimizu, Appl. Microbiol. Biotechnol., 2001, 55, 590.
Q245Tr
Q245W
Q245Wr
Q245Y
Q245Yr
Q245V
Q245Vr
CCA ATA TCT ACG GCG CTG ACA TAA TAG GTT
GGG GGC ATT AAG GCA AGG GCA GG
CCT GCC CTT GCC TTA ATG CCC CCA TGG TAT
TAT GTC AGC GCC GTA GAT ATT GG
CCA ATA TCT ACG GCG CTG ACA TAA TAC CAT
GGG GGC ATT AAG GCA AGG GCA GG
CCT GCC CTT GCC TTA ATG CCC CCA TAC TAT
TAT GTC AGC GCC GTA GAT ATT GG
CCA ATA TCT ACG GCG CTG ACA TAA TAG TAT
GGG GGC ATT AAG GCA AGG GCA GG
CCT GCC CTT GCC TTA ATG CCC CCA GTT TAT
TAT GTC AGC GCC GTA GAT ATT GG
CCA ATA TCT ACG GCG CTG ACA TAA TAA ACT
GGG GGC ATT AAG GCA AGG GCA GG
10 A. Shimizu, M. Kataoka, E. Yanase, K. Kita, T. Morikawa and
T. Myoshi, Japanese Patent Application JP0810369 A,, date of
publication 23 April 1996.
11 K. Kita, M. Kataoka and S. Shimizu, J. Biosci. Bioeng., 1999, 88,
Notes and references
591.
1 (a) R. L. Dow, Expert Opinions on Investigational Drugs, 1997, p.
1354; (b) A. E. Weber, Annu. Rep. Med. Chem., 1998, 33, 193; (c) J.
A. Lafontaine, R. F. Day, J. Dibrino, J. R. Hadcock, D. M. Hargrove,
M. Linhares, K. A. Martin, T. S. Maurer, N. A. Nardone, D. A. Tess
and P. DaSilva-Jardine, Bioorg. Med. Chem. Lett., 2007, 17, 5245.
2 (a) M. Imanishi, Y. Tomishima, S. Itou, H. Hamashima, Y. Nakajima,
K. Washizuka, M. Sakurai, S. Matsui, E. Imamura, K. Ueshima, T.
Yamamoto, N. Yamamoto, H. Ishikawa, K. Nakano, K. Hamada, Y.
Matsumura, F. Takamura and K. Hattori, J. Med. Chem., 2008, 51,
1925; (b) N. Tanaka, T. Tamai, H. Mukaiyama, A. Hirabayashi, H.
Muranaka, T. Ishikawa, J. Kobayashi, S. Akahane and M. Akahane,
J. Med. Chem., 2003, 46, 105.
12 H. Li, D. Zhu, L. Hua and E. R. Biehl, Adv. Synth. Catal., 2009, 351,
583.
13 P. Vander Elst, D. Gondol, C. Wynants, D. Tourwe and G. Van Binst,
Int. J. Pept. Protein Res., 1987, 29, 331–46.
14 D. R. Yazbeck, J. Tao, C. Martinez, B. J. Kline and S. Hu, Adv. Synth.
Catal., 2003, 345, 524.
15 These were NS81052, NS81071, NS81037, NS81038, Savinase,
Lipozyme TL 100 L and Lecitase Novo (all from Novozymes),
Aspergillus oryzae protease and Candida rugosa lipase (Protease M
and Lipase AY 30, respectively, both from Amano), two Candida
cylindracea lipases (Lipases OF and MY from Meito), Esterase 003
from Codexis, Protex 6 L from Genencor, Mucor miehei esterase from
Fluka and Cholesterol esterase from Roche.
16 Co-solvent screen of enzymatic desymmetrisation of diester (17).
Conditions: diester 17 (20 mg) was charged to a set of reaction vials
and co-solvent (0–250 mL) added, followed by pH 6.0 calcium acetate
buffer (0.2 M) to make the total solvent volume up to 0.5 mL. Finally,
a solution of Lipozyme TL 100 L (20 mL) was charged to each
vial, the reaction vials were crimped and placed into an Eppendorf
thermomixer orbital shaker and shaken at 900 RPM at 40 ◦C over
24 h.
3 P. A. Bradley, R. J. Carroll, Y. C. Lecouturier, R. Moore, P. Noeureuil,
B. Patel, J. Snow and S. Wheeler, Org. Process Res. Dev., 2010, 14,
1326.
4 R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 2001, 40, 40.
5 Some of the poor selectivity in these alternative reductions can be
attributed to the reducing agent used. Depending on the supplier,
borane-tetrahydrofuran complex is stabilized by different additives.
Thus, for example, Aldrich adds <0.005 M NaBH4 as stabilizer.
Experiments have shown that even small amounts of the NaBH4
have a dramatic impact on the selectivity of the asymmetric reduction
with (R)-Me-CBS-oxazaborolidine, and hence when using stabilized
batches from Aldrich, the proportion of unwanted (S)-enantiomer
was 17%–20%. Under the same conditions using BH3/THF from
Fluka (contains no NaBH4 stabilizer) only 3%–4% of the unwanted
(S)-enantiomer was obtained, however, the yield was low (~60%)
17 C. Jimenez-Gonzalez, C. S. Ponder, Q. B. Broxterman and J. B.
Manley, Org. Process Res. Dev., 2011, 15, 912.
18 R. A. Sheldon, Green Chem., 2007, 9, 1273.
19 Radau, Monatshefte fu¨r Chemie, 2003, 134, 1159.
20 A. D. Brown, K. James, C. A. L. Lane, I. B. Moses, N. M. Thomson,
US2005/171147 A1, 2005.
2894 | Green Chem., 2011, 13, 2888–2894
This journal is
The Royal Society of Chemistry 2011
©