Journal of the American Chemical Society
Page 4 of 5
(4) (a) Shim, J.-G.; Nakamura, H.; Yamamoto, Y. J. Org. Chem.
tives without resorting to the deprotonative functionali-
zation manner.17 This three-component transformation is
characterized by its well organized reaction sequence,
thus obviating the potential side pathways which would
otherwise occur between either of two reaction partners
employed. It is also worth mentioning that by making use
of such strategy, the reaction boundary, which restricts
the allylic alkylation of trifluoromethyl-containing mole-
cules to those with relative low pKa values, is skillfully
overridden.16
1
2
3
4
5
6
7
8
1998, 63, 8470. (b) Nakamura, H.; Sekido, M.; Ito, M.; Yamamo-
to, Y. J. Am. Chem. Soc. 1998, 120, 6838. (c) Sekido, M.; Aoyagi,
K.; Nakamura, H.; Kabuto, C.; Yamamoto, Y. J. Org. Chem. 2001,
66, 7142.
(5) (a) Shim, J.-G.; Yamamoto, Y. J. Org. Chem. 1998, 63, 3067. (b)
Lowe, M. A.; Ostovar, M.; Ferrini, S.; Chen, C. C.; Lawrence, P.
G.; Fontana, F.; Calabrese, A. A.; Aggarwal, V. K. Angew. Chem.
Int. Ed. 2011, 50, 6370. (c) Xu, C.-F.; Zheng, B.-H.; Suo, J.-J.; Ding,
C.-H.; Hou, X.-L. Angew. Chem. Int. Ed. 2015, 54, 1604.
(6) (a) Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem.
2002, 67, 5977. (b) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B.
Chem. Eur. J. 2012, 18, 2423. (c) Klein, J. E. M. N.; Rommel, S.;
Plietker, B. Organometallics 2014, 33, 5802.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
(7) (a) Muller, K., Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J.;
Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. (c) Fujiwara, T.;
O’Hagan, D. J. Fluorine Chem. 2014, 167, 16.
Detailed experiment procedures and compound characteri-
zation deta. “This material is available free of charge via the
Internet at http://pubs.acs.org.”
(8) (a) Alonso, C.; de Marigorta, E. M.; Rubiales, G.; Palacios, F.
Chem. Rev. 2015, 115, 1847. (b) Studer, A. Angew. Chem. Int. Ed.
2012, 51, 8950. (c) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D.
Chem. Rev. 2015, 115, 826. (d) Liang, T.; Neumann, C. N.; Ritter,
T. Angew. Chem. Int. Ed. 2013, 52, 8214.
(9) Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
(10) (a) Gao, B.; Zhao, Y.; Hu, J. Angew. Chem. Int. Ed. 2015, 54,
638. (b) Yang, M.-H.; Orsi, D. L.; Altman, R. A. Angew. Chem. Int.
Ed. 2015, 54, 2361. (c) Belanger, E.; Cantin, K.; Messe, O.; Trem-
blay, M.; Paquin, J.-F. J. Am. Chem. Soc. 2007, 129, 1034. (d) Bel-
anger, E.; Houze, C.; Guimond, N.; Cantin, K.; Paquin, J.-F.
Chem. Commun. 2008, 3251.
(11) For the incorporation of external nucleophiles through nu-
cleophilic addition or SN2’ displacement attacking at the termi-
nal carbon atom of gem-difluoroalkene derivatives, see: (a)
Ichikawa, J., Wada, Y., Fujiwara, M.; Sakoda, K. Synthesis 2002,
1917. (b) Zhang, B.; Zhang, X. Chem. Commun. 2016, 52, 1238. (c)
Ueki, H.; Chiba, T.; Yamazaki, T.; Kitazume, T. J. Org. Chem.
2004, 69, 7616.
(12) (a) Hollingworth, C.; Hazari, A.; Hopkinson, M. N.; Tredwell,
M.; Benedetto, E.; Huiban, M.; Gee, A. D.; Brown, J. M.; Gouver-
neur, V. Angew. Chem. Int. Ed. 2011, 50, 2613. (b) Katcher, M. H.;
Sha, A.; Doyle, A. G. J. Am. Chem. Soc. 2011, 133, 15902. (c) Lauer,
A. M.; Wu, J. Org. Lett. 2012, 14, 5138. (d) Katcher, M. H.; Doyle,
A. G. J. Am. Chem. Soc. 2010, 132, 17402. (e) Benedetto, E.; Tred-
well, M.; Hollingworth, C.; Khotavivattana, T.; Brown, J. M.;
Gouverneur, V. Chem. Sci. 2013, 4, 89. (f) Topczewski, J. J.; Tew-
son, T. J.; Nguyen, H. M. J. Am. Chem. Soc. 2011, 133, 19318. (g)
Zhang, Z.; Wang, F.; Mu, X.; Chen, P.; Liu, G. Angew. Chem. Int.
Ed. 2013, 52, 7549.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
§
P. T. and C.-Q. W. contributed equally to this work.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank the “1000-Youth Talents Plan”, a Start-up Grant
(39837110) from Nanjing Tech University. We also thank the
funding support of the State Key Program of National Natu-
ral Science Foundation of China (21432009) for generous
financial support.
REFERENCES
(1) (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(b) Lu, Z.; Ma, S. Angew. Chem. Int. Ed. 2008, 47, 258.
(2) (a) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43,
1461. (b) You, H.; Rideau, E.; Sidera, M.; Fletcher, S. P. Nature
2015, 517, 351. (c) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Car-
reira, E. M. Science 2013, 340, 1065. (d) Sha, S.-C.; Jiang, H.; Mao,
J.; Bellomo, A.; Jeong, S. A.; Walsh, P. J. Angew. Chem. Int. Ed.
2016, 55, 1070. (e) Turnbull, B. W. H.; Oliver, S.; Evans, P. A. J.
Am. Chem. Soc. 2015, 137, 15374. (f) Trost, B. M.; Fraisse, P. L.;
Ball, Z. T. Angew. Chem. Int. Ed. 2002, 41, 1059. (g) Holzwarth,
M.; Dieskau, A.; Tabassam, M.; Plietker, B. Angew. Chem. Int. Ed.
2009, 48, 7251. (h) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.;
Carreira, E. M. Angew. Chem. Int. Ed. 2015, 54, 14363. (j) Liu, W.-
B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem.
Soc. 2013, 135, 10626. (k) Liu, W.-B.; Reeves, C. M.; Stoltz, B. M. J.
Am. Chem. Soc. 2013, 135, 17298. (l) Krautwald, S.; Schafroth, M.
A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
(m) Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, T.
N. J. Am. Chem. Soc. 2016, 138, 5214.
(3) (a) Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2011, 38,
95. (b)Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (c)
Graening, T.; Schmalz, H.-G. Angew. Chem. Int. Ed. 2003, 42,
2580. (d) Zhang, Z.-X.; Chen, S.-C.; Jiao, L. Angew. Chem. Int. Ed.
2016, 55, 8090. (e) Korch, K. M.; Eidamshaus, C.; Behenna, D. C.;
Nam, S.; Horne, D.; Stoltz, B. M. Angew. Chem. Int. Ed. 2015, 54,
179. (f) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140.
(13) Qiao, Y.; Si, T.; Yang, M.-H.; Altman, R. A. J. Org. Chem.
2014, 79, 7122.
(14) Other transition-metal-catalyzed allylic alkylation protocols
such as Rh, Ir, Ni and Mo-based systems were not effective for
this transformation; using nitrogenous or NHC ligands only led
to formation of premature protonation byproducts, see the sup-
porting information for details.
(15) We appreciate one reviewer’s comments on a possible role of
CuF2 by assuming the in situ formation of fluoride cluster with
CsF, which acts as a “soft” nucleophile and also the difficulty for
asymmetric induction using chiral ligands as result of Cu-
stabilized carbanion with considerable covalent bond character.
(16) (a) Komatsu, Y.; Sakamoto, T.; Kitazume, T. J. Org. Chem.
1999, 64, 8369. (b) Zhang, W.; Zhao, Y.; Ni, C.; Mathew, T.; Hu, J.
Tetrahedron Lett. 2012, 53, 6565. (c) Shibata, N.; Fukushi, K.;
Furukawa, T.; Suzuki, S.; Tokunaga, E.; Cahard, D. Org. Lett.
2012, 14, 5366. (d) Li, L.; Chen, Q.-Y.; Guo, Y. Chem. Commun.
2013, 49, 8764.
ACS Paragon Plus Environment