C O M M U N I C A T I O N S
eminent importance both as highly effective catalysts for polymeri-
zation reactions and as volatile precursors for MOCVD and atomic
layer deposition processes.15 While lanthanide amidinates in the
oxidation states +2 and +3 are well established, cerium(IV) amidinate
complexes remained unknown. The superior performance of the
organoiodine(III) route was further proven by the synthesis and
structural characterization of the first cerium(IV) amidinate complex.
[p-MeOC6H4C(NSiMe3)2]3Ce(Nt CR) (4, R ) p-C6H4OMe) was
oxidized with PhICl2 in pentane, resulting in clean formation of
the corresponding Ce(IV) amidinate [p-MeOC6H4C(NSiMe3)2]3CeCl
(5), which was isolated as dark red-brown block-like crystals in
61% yield (Scheme 1, path c).14 The presence of the first chloro-
functional cerium(IV) amidinate was clearly confirmed by a single-
crystal X-ray diffraction study (Figure 2; Ce-Cl ) 2.659(1) Å).
first new tris(cyclopentadienyl)cerium(IV) complex reported in more
than 20 years but also the first chloro-functional species of this
type for which a promising derivative chemistry can be envisioned.
In summary, we have discovered an innovative and generally
applicable synthesis route that enables facile access to known and
novel tetravalent cerium complexes. This organoiodine(III)-based
oxidation protocol appears to be quite general and thus opens the
door for future investigations in the field of Ce(IV) amides,
amidinates, and organometallics. Work focused on extending this
chemistry to other classes of Ce(IV) species and iodine(III) reagents,
such as PhIO and PhIO2, is currently underway. It takes little
imagination to foresee that the new synthetic route could also have
a bright future in high-valent organoactinide chemistry.
Acknowledgment. This work was generously supported by the
Deutsche Forschungsgemeinschaft (SPP 1166 “Lanthanoid-spezi-
fische Funktionalita¨ten in Moleku¨l und Material”) and the University
of Bergen (program Nanoscience@UiB).
Supporting Information Available: X-ray structural data, in CIF
format, for 3, 5, and 7; experimental details on the preparation and
characterization of 3-5 and 7. This material is available free of charge
References
(1) Recent reviews: (a) Das, A. K. Coord. Chem. ReV. 2001, 213, 307. (b)
Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J. Acc. Chem. Res. 2004, 37,
21. (c) Dziegiec, J.; Domagala, S. Trends Inorg. Chem. 2005, 8, 43.
(2) Recent reviews: (a) Komiyama, M. Metal Ions Biol. Syst. 2003, 40, 463.
(b) Yamamoto, Y.; Komiyama, M. Mater. Integr. 2005, 19, 55.
(3) Review: Jian, H.; Zhou, X.; Zhao, D. Huaxue Shiji 2006, 28, 279.
(4) Recent reviews: (a) Kaspar, J.; Fornasiero, P.; Graziani, M. Catal. Today
1999, 50, 285. (b) Trovarelli, A.; de Leitenburg, C.; Boaro, M.; Dolcetti,
G. Catal. Today 1999, 50, 353. (c) Duprez, D.; Descorme, C. Catal. Sci.
Ser. 2002, 2, 243. (d) Shelef, M.; Graham, G. W.; McCabe, R. W. Catal.
Sci. Ser. 2002, 2, 343. (e) Primet, M.; Garbowski, E. Catal. Sci. Ser. 2002,
2, 407. (f) Imamura, S. Catal. Sci. Ser. 2002, 2, 431. (g) Kaspar, J.;
Fornasiero, P. J. Solid State Chem. 2003, 171, 19.
(5) (a) Wang, H.; Zhu, J. J.; Zhu, J. M.; Liao, X. H.; Xu, S.; Ding, T.; Chen,
H. Y. Phys. Chem. Chem. Phys. 2002, 4, 3794. (b) Si, R.; Zhang, Y.-W.;
You, L.-P.; Yan, C.-H. Angew. Chem. 2005, 117, 3320; Angew. Chem.,
Int. Ed. 2005, 44, 3256.
(6) (a) Bradley, D. C.; Holloway, H. Can. J. Chem. 1962, 40, 1176. (b) Sen,
A.; Stecher, H. A.; Rheingold, A. L. Inorg. Chem. 1992, 31, 473. (c) Hubert-
Pfalzgraf, L. G.; El Khokh, N.; Daran, J. C. Polyhedron 1992, 11, 59. (d)
Hubert-Pfalzgraf, L. G.; Guillon, H. Appl. Organomet. Chem. 1998, 12,
221. (e) Suh, S.; Guan, J.; Miinea, L. A.; Lehn, J.-S. M.; Hoffman, D. M.
Chem. Mater. 2004, 16, 1667.
Figure 2. Molecular structure of [p-MeOC6H4C(NSiMe3)2]3CeCl (5).
A further example of the versatility of PhICl2 as an oxidant was
demonstrated by the synthesis and structural characterization of
organometallic tris(cyclopentadienyl)cerium(IV) chloride, the long
sought-after cerium(IV) analogue of (C5H5)3UCl.16 Addition of 0.5
equiv of PhICl2 to a toluene solution of (C5H5)3Ce (6) produced an
immediate color change from yellow to black (Scheme 1, path d).
Black crystals were isolated, after removal of the volatiles, from a
concentrated toluene solution at -35 °C in 15% yield.14 Diamag-
1
netic (C5H5)3CeCl (7) displays a singlet at δ 4.74 in the H NMR
spectrum in C6D6 (cf. paramagnetic 6: δ 2.22 ppm18). X-ray
diffraction analysis revealed these crystals to be (C5H5)3CeCl (Figure
3). The Ce-Cl bond distance of 2.6666(7) Å appears slightly elongated
compared to those of complexes 3 and 5 but shorter than in
[{N[CH2CH2NdCH(2-O-3,5-tBu2C6H2)]3}CeCl (2.7930(9) Å).17
(7) (a) Eisenstein, O.; Hitchcock, P. B.; Hulkes, A. G.; Lappert, M. F.; Maron,
L. Chem. Commun. 2001, 1560. (b) Hitchcock, P. B.; Hulkes, A. G.;
Lappert, M. F. Inorg. Chem. 2004, 43, 1031.
(8) Bradley, D. C.; Ghotra, J. S.; Hart, F. A. J. Chem. Soc., Dalton Trans.
1973, 1021.
(9) Morton, C.; Alcock, N. W.; Lees, M. R.; Munslow, I. J.; Sanders, C. J.;
Scott, P. J. Am. Chem. Soc. 1999, 121, 11255.
(10) Hitchcock, P. B.; Lappert, M. F.; Protchenko, A. V. Chem. Commun. 2006,
3546.
(11) (a) Gulino, A.; Casarin, M.; Conticello, V. P.; Gaudiello, J. G.; Mauermann,
H.; Fragala´, I.; Marks, T. J. Organometallics 1988, 7, 2361. (b) Evans,
W. J.; Deeming, T. J.; Ziller, J. W. Organometallics 1989, 8, 1581.
(12) (a) Lulinski, P.; Obeid, N.; Skulski, L. Bull. Chem. Soc. Jpn. 2001, 74,
2433. (b) Zielinska, A.; Skulski, L. Tetrahedron Lett. 2004, 45, 1087. (c)
Kazmierczak, P.; Skulski, L.; Obeid, N. J. Chem. Res. (S) 1999, 64.
(13) (a) Filippou, A. C.; Winter, J. G.; Kociok-Ko¨hn, G.; Troll, C.; Hinz., I.
Organometallics 1999, 18, 2649. (b) Whitfield, S. R.; Sandford, M. S. J. Am.
Chem. Soc. 2007, 129, 15142. (c) Mamtora, J.; Crosby, S. H.; Newman,
C. P.; Clarkson, G. J.; Rourke, J. P. Organometallics 2008, 27, 5559. (d)
Gaillard, S.; Slawin, A. M. Z.; Bonura, A. T.; Stevens, E. D.; Nolan, S. P.
Organometallics 2010, 29, 394.
(14) See Supporting Information. The p-anisyl derivatives were chosen in this
study because this substituent is known to enhance crystallinity of the
products (cf. ref 15).
(15) Review: Edelmann, F. T. Chem. Soc. ReV. 2009, 38, 2253.
(16) Wilkinson, G.; Reynolds, L. T. J. Inorg. Nucl. Chem. 1956, 2, 246.
(17) Gottfriedsen, J.; Dro¨se, P. Z. Anorg. Allg. Chem. 2008, 634, 87.
(18) 1H NMR data measured by the authors.
(19) (a) Kalsotra, B. L.; Multani, R. K.; Jain, B. D. Isr. J. Chem. 1971, 9, 569.
For refutation, see: (b) Deacon, G. B.; Tuong, T. D.; Vince, D. G.
Polyhedron 1983, 2, 969.
Figure 3. Molecular structure of (C5H5)3CeCl (7).
Notably, 7 was first described in 1971,19a but that report was
later refuted by Deacon et al.19b Only two well-defined Ce(IV)
cyclopentadienyl complexes, (C5H5)3Ce(OiPr)11a and (C5H5)3Ce-
(OtBu),11b are known so far. Thus, compound 7 is not only the
JA107494H
9
J. AM. CHEM. SOC. VOL. 132, NO. 40, 2010 14047