Full Paper
[Et3PCO2SiMe3][OTf]
(11),
[Et3PCO2SiPh3][OTf]
(13),
(79.5 MHz, CD2Cl2): d=1.6 ppm (s); 31P{1H} NMR (161.9 MHz,
CD2Cl2): d=57.5 (brs, 15), 62.5 ppm (brs, free PtBu3).
[tBu3PCO2SiMe3][OTf] (14), [tBu3PCO2SiPh3][OTf] (15): These com-
pounds were prepared in a similar fashion and thus a general pro-
cedure is detailed. A J-Young NMR tube was charged with the ap-
propriate silyl triflate (1.0 equiv) and PEt3 (1.0 equiv) in CD2Cl2
(1 mL); The reaction mixture was then examined for adduct forma-
tion by multinuclear NMR spectroscopy. Following this, the J-
Young NMR tube was degassed and CO2 gas was added. In each
case, NMR spectra obtained after one hour revealed the presence
a CO2 sequestered species in equilibrium with free starting materi-
als or an adduct. The Si/P CO2 captured species were not isolable
and thus were characterized in a CO2-filled J-Young NMR tube.
[Et3P(CO2)SiPh2(OTf)][OTf] (16) and [(Et3PCO2)2SiPh2][OTf]2 (17): A
J-Young NMR tube was charged with 1 (1.0 equiv) and PEt3 (0.5,
1.0, 2.0, or 4.0 equiv) in CD2Cl2 (1 mL). No adduct formation was
observed between Ph2Si(OTf)2 and PEt3 by 31P NMR spectroscopy.
The J-Young NMR tubes were degassed and CO2 gas was added.
The relative amounts of 16 and 17 observed in the reaction mix-
tures are strongly dependent on the number of equivalents of PEt3
used. NMR spectroscopic data is provided for the reactions using
0.5 equiv and 4.0 equiv PEt3.
Reaction mixture with 0.5 equiv PEt3: Scale:
1
(29 mg,
11: Scale:
6 (30 mg, 0.135 mmol, 1.0 equiv), PEt3 (10 mg,
0.0604 mmol, 1.0 equiv), PEt3 (2 mg, 0.0302 mmol, 0.5 equiv);
1H NMR (400.0 MHz, CD2Cl2): d=1.35 (m, 16 PCH2CH3), 2.69 (brm,
16 P-CH2), 7.61 (brdd, 3JHH =8 Hz, 3JHH =8 Hz, m-C6H5), 7.76 (tt,
0.135 mmol, 1.0 equiv); (Reaction mixture with 10): 1H NMR
(400.0 MHz, CD2Cl2): d=0.48 (s, Si-CH3), 1.16–1.42 (br, 11 P-Et),
1.54–1.80 (br, 10 P-Et), 2.25–2.40 (br, 10 P-Et), 2.40–2.90 ppm (br, 11
P-Et); 13C{1H} NMR (100.6 MHz, CD2Cl2): d=À0.10 (s, Si-CH3), 6.36
(br, P-CH2CH3), 12.45 (br, P-CH2), 120.06 (q, 1JCF =319 Hz, CF3),
4
3JHH =8 Hz, JHH =2 Hz, p-C6H5), 7.83 ppm (dm, 3JHH =8 Hz, o-C6H5);
13C{1H} NMR (100.6 MHz, CD2Cl2): d=6.15 (d, 2JPC =6 Hz, 16 P-
CH2CH3), 12.66 (d, 1JPC =42 Hz, 16 P-CH2), 118.97 (q, 1JCF =318 Hz,
CF3), 122.84 (s, i-C6H5), 125.30 (s, free CO2), 129.52 (s, m-C6H5),
134.79 (s, p-C6H5), 135.65 (s, o-C6H5), 162.83 ppm (d, 1JPC =112 Hz,
16 P-CO2); 19F{1H} NMR (376.4 MHz, CD2Cl2): d=À76.57 ppm (s,
CF3); 29Si NMR (79.5 MHz, CD2Cl2): d=À24.6 ppm (s, 16); 31P{1H}
NMR (161.9 MHz, CD2Cl2): d=41.7 (br, trace, 17), 43.9 ppm (s, 16).
125.28 (br, free CO2), 163.14 ppm (brd, JCP =115 Hz, P-CO2); 19F{1H}
1
NMR (376.4 MHz, CD2Cl2): d=À78.39 ppm (s, CF3); 29Si{1H} NMR
(HMBC) (99.3 MHz, CD2Cl2): d=40.3 ppm (br); 31P{1H} NMR
(161.9 MHz, CD2Cl2): d=À13.9 (br, 10), 38.4 ppm (br, 11).
13: Scale:
5 (22 mg, 0.0539 mmol, 1.0 equiv), PEt3 (4 mg,
0.0539 mmol, 1.0 equiv); (Reaction mixture with 12): 1H NMR
Reaction mixture with 4.0 equiv PEt3: Scale: 1 (29 mg, 0.603 mmol,
3
(400.0 MHz, CD2Cl2): d=1.04 (brm, 12 P-CH2CH3), 1.28 (dt, JHP
=
1
1.0 equiv), PEt3 (18 mg, 0.241 mmol, 4.0 equiv); H NMR (400.0 MHz,
20 Hz, 3JHH =8 Hz, 13 P-CH2CH3), 1.48 (brm, 12 P-CH2), 2.62 (dq,
2JHP =14 Hz, 3JHH =8 Hz, 13 P-CH2), 7.51 (br, m-C6H5), 7.60 (br, p-
C6H5), 7.68 ppm (br, o-C6H5); 13C{1H} NMR (100.6 MHz, CD2Cl2): d=
CD2Cl2): d=0.90–1.50 (br, overlapping PEt3 and 17 P-Et), 2.40–2.80
3
3
(br, 17 P-CH2CH3), 7.59 (dd, JHH =7 Hz, JHH =7 Hz, m-C6H5), 7.69 (t,
3JHH =7 Hz, p-C6H5), 7.83 ppm (dd, 3JHH =7 Hz, 4JHH =1 Hz, o-C6H5);
13C{1H} NMR (100.6 MHz, CD2Cl2): d=6.00 (br, 17 P-CH2CH3), 9.30
(br, PEt3 P-CH2CH3), 12.24 (br, 17 P-CH2), 18.48 (br, PEt3 P-CH2),
2
6.24 (d, JPC =6 Hz, 13 P-CH2CH3), 9.05 (br, 12 P-CH2CH3), 12.62 (d,
1JPC =42 Hz, 13 P-CH2), 17.58 (br, 12 P-CH2), 118.90 (q, JCF =318 Hz,
1
CF3), 125.27 (s, free CO2), 128.86 (s, 12 i-C6H5), 128.95 (s, 13 m-C6H5),
129.00 (s, 12 m-C6H5), 129.15 (s, 13 i-C6H5), 132.27 (s, 12 p-C6H5),
132.46 (s, 13 p-C6H5), 136.02 (s, 13 o-C6H5), 163.49 ppm (d, JCP
112 Hz, P-CO2); 19F{1H} NMR (376.4 MHz, CD2Cl2): d=À78.20 ppm (s,
CF3); 29Si{1H} NMR (HMBC) (99.3 MHz, CD2Cl2): d=À0.5 (s, 12),
0.5 ppm (s, 13); 31P{1H} NMR (161.9 MHz, CD2Cl2): d=À15.2 (s, 12),
41.0 ppm (s, 13).
1
121.14 (q, JCF =320 Hz, CF3), 124.56 (s, i-C6H5), 125.25 (br, free CO2),
129.33 (s, m-C6H5), 133.92 (s, p-C6H5), 135.66 (s, o-C6H5), 162.65 ppm
(brd, 1JPC =119 Hz, PCO2); 19F{1H} NMR (376.4 MHz, CD2Cl2): d=
À78.78 ppm (s, CF3); 29Si NMR (79.5 MHz, CD2Cl2): dSi =À21.0 ppm
(s, 17); 31P{1H} NMR (161.9 MHz, CD2Cl2): d=À18.6 (br, PEt3), 41.7
(br, 17), 43.9 ppm (br, trace, 16).
1
=
[tBu3P(CO2)SiPh2(OTf)][OTf2] (18) and [(tBu3PCO2)2SiPh2][OTf]2
(19): A J-Young NMR tube was charged with 1 (1.0 equiv) and
PtBu3 (1.0 or 2.0 equiv) in CD2Cl2 (1 mL). No adduct formation was
observed between 1 and PtBu3 by 31P NMR spectroscopy. The J-
Young NMR tubes were degassed and CO2 gas was added. Partial
conversion to 18 was observed at room temperature, while forma-
tion of 19 was only observable at low temperature (À308C).
14: Scale:
6 (22 mg, 0.0990 mmol, 1.0 equiv), PtBu3 (20 mg,
0.0990 mmol, 1.0 equiv); Reaction mixture (258C): 1H NMR
(400.0 MHz, 258C, CD2Cl2): d=0.49 (s, 9H, Si-CH3), 1.19–1.50 ppm
(br, 27H, PC(CH3)3); 13C{1H} NMR (100.6 MHz, 258C, CD2Cl2): d=0.32
(s, Si-CH3), 32.36 (br, PC(CH3)3), 34.70 (br, P-C), 119.54 (q, JCF
1
=
319 Hz, CF3), 161.97 ppm (br, P-CO2); 19F{1H} NMR (376.4 MHz,
CD2Cl2): d=À77.86 ppm (s, CF3); 29Si{1H} NMR (HMBC) (99.3 MHz,
CD2Cl2): d=43.7 ppm(s); 31P{1H} NMR (161.9 MHz, 258C, CD2Cl2): d=
62.5 (brs); (À408C): 1H NMR (500.0 MHz, À408C, CD2Cl2): d=0.44
(s, 9H, Si-CH3), 1.65 ppm (d, 27H, 3JHP =15 Hz, PC(CH3)3); 13C{1H}
NMR (100.6 MHz, À408C, CD2Cl2): d=À0.67 (s, Si-CH3), 29.86 (s,
18: Reaction mixture with 1.0 equiv PtBu3: Scale:
1 (30 mg,
0.0624 mmol, 1.0 equiv), PtBu3 (13 mg, 0.0624 mmol, 1.0 equiv);
(258C): 1H NMR (400.0 MHz, CD2Cl2): d=1.30 (br, free PtBu3), 1.70
3
3
(br, 18 P-C(CH3)3), 7.62 (dd/br, JHH =8 Hz, JHH =8 Hz, m-C6H5), 7.76
(brt, 3JHH =8 Hz, p-C6H5), 7.81 ppm (dd, 3JHH =8 Hz, 4JHH =1 Hz, o-
C6H5); 13C{1H} NMR (125.7 MHz, CD2Cl2): d=30.58 (br), 32.51 (br),
34.63 (brd, 1JCP =30 Hz, P-C), 42.76 (brd, 1JCP =12 Hz, P-C), 119.41
(q, 1JCF =319 Hz, CF3), 122.80 (brs, i-C6H5), 122.89 (brs, i-C6H5),
125.29 (brs, free CO2), 129.51 (brs, m-C6H5), 129.75 (brs, m-C6H5),
134.80 (s, overlapping p-C6H5), 135.58 (brs, overlapping o-C6H5),
162.96 ppm (brd, 1JCP =80 Hz, PCO2); 19F{1H} NMR (376.4 MHz,
CD2Cl2): d=À77.32 ppm (s, CF3); 29Si{1H} NMR (HMBC) (99.3 MHz,
CD2Cl2): d=À24.6 (s, Ph2Si(OTf)2), À20.7 ppm (s, 18); 31P{1H} NMR
(161.9 MHz, CD2Cl2): d=57.5 (brs, 18), 62.5 ppm (brs, free PtBu3).
1
1
PC(CH3)3), 40.99 (d, JCP =18 Hz, P-C), 120.49 (q, JCF =321 Hz, CF3),
161.45 ppm (d, 1JCP =87 Hz, P-CO2); 19F{1H} NMR (376.4 MHz,
CD2Cl2): dF =À79.07 ppm (s, CF3); 29Si{1H} NMR (HMBC) (99.3 MHz,
CD2Cl2): d=38.2 ppm (s); 31P{1H} NMR (202.4 MHz, À408C, CD2Cl2):
1
d=50.23 ppm (d, JCP =87 Hz).
15: Scale:
5 (30 mg, 0.0734 mmol, 1.0 equiv), PtBu3 (15 mg,
0.0734 mmol, 1.0 equiv); Reaction mixture: 1H NMR (400.0 MHz,
3
3
CD2Cl2): d=1.31 (d, JHP =10 Hz, free PtBu3), 1.66 (d, JHP =15 Hz, 15
P-C(CH3)3), 7.51 (dd/br, 3JHH =7 Hz, 3JHH =7 Hz, m-C6H5), 7.61 (brt,
3JHH =7 Hz, p-C6H5), 7.71 ppm (brd, JHH =7 Hz, o-C6H5); 13C{1H} NMR
3
(100.6 MHz, CD2Cl2): d=30.69 (br, P-C), 32.61 (d, 3JCP =13 Hz, P-
19: Reaction mixture with 2.0 equiv PtBu3: Scale:
1 (29 mg,
1
C(CH3)3), 119.43 (q, JCF =321 Hz, CF3), 125.32 (s, free CO2), 128.91 (s,
0.0603 mmol, 1.0 equiv), PtBu3 (24 mg, 0.121 mmol, 2.0 equiv);
1
3
m-C6H5), 129.09 (s, i-C6H5), 132.44 (s, p-C6H5), 136.02 (s, o-C6H5),
162.93 ppm (brd, 1JPC =85 Hz, 15 P-CO2); 19F{1H} NMR (376.4 MHz,
258C, CD2Cl2): d=À77.42 ppm (brs, CF3); 29Si NMR (HMBC)
(À308C): H NMR (500.0 MHz, CD2Cl2): d=1.64 (d, 54H, JHP =16 Hz,
3
3
P-C(CH3)3), 7.62 (dd, 4H, JHH =8 Hz, JHP =8 Hz, m-C6H5), 7.76 ppm
(m, 6H, overlapping p-C6H5 o-C6H5); 13C{1H} NMR (125.7 MHz,
Chem. Eur. J. 2015, 21, 13027 – 13034
13033
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim