4966; (g) F. Wu, R. Hong, J. Khan, X. Liu and L. Deng, Angew.
Chem., Int. Ed., 2006, 45, 4301; (h) Z. Yu, X. Liu, L. Zhou, L. Lin and
X. Feng, Angew. Chem., Int. Ed., 2009, 48, 5195.
3 For selected examples of catalytic asymmetric conjugate addition
of a-substituted b-nitrocarbonyl pronucleophiles for the construc-
tion of adjacent quaternary and tertiary stereogenic centers, see:
(a) Z. H. Chen, H. Morimoto, S. Matsunaga and M. Shibasaki,
J. Am. Chem. Soc., 2008, 130, 2170; (b) D. Uraguchi,
K. Koshimoto and T. Ooi, J. Am. Chem. Soc., 2008, 130, 10878.
4 For review and selected examples of catalytic asymmetric conjugate
addition of a-substituted b-cyanocarbonyl pronucleophiles for the
construction of adjacent quaternary and tertiary stereogenic centers,
see: (a) S. Jautze and R. Peters, Synthesis, 2010, 365; (b) M. S. Taylor
and E. N. Jacobsen, J. Am. Chem. Soc., 2003, 125, 11204;
(c) M. S. Taylor, D. N. Zalatan, A. M. Lerchner and E. N. Jacobsen,
J. Am. Chem. Soc., 2005, 127, 1313; (d) F. Marini, S. Sternativo, F. Del
Verme, L. Testaferri and M. Tiecco, Adv. Synth. Catal., 2009, 351, 1801;
(e) H. Li, J. Song and L. Deng, Tetrahedron, 2009, 65, 3139.
Scheme 1 Synthetic transformation of the Michael adduct 3aa.
Conditions: (i) Zn/HCl, 40 1C, 78% yield; (ii) Pd/C, H2 (20 atm),
50 1C, 10 h, 60% yield; (iii) Pd/C, H2 (40 atm), 80 1C, 30 h, 63% yield;
(iv) TsCl/Et3N, 91% yield.
stereocenters in
a highly diastereo-/enantioselective manner,
5 (a) W. Nerinckx and M. Vandewalle, Tetrahedron: Asymmetry, 1990,
1, 265; (b) P. Galzerano, G. Bencivenni, F. Pesciaioli, A. Mazzanti,
B. Giannichi, L. Sambri, G. Bartoli and P. Melchiorre, Chem.–Eur.
J., 2009, 15, 7846; (c) T. Bui, S. Syed and C. F. Barbas III, J. Am.
Chem. Soc., 2009, 131, 8758; (d) Y. Kato, M. Furutachi, Z. Chen,
H. Mitsunuma, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc.,
2009, 131, 9168; (e) M. P. Lalonde, Y. Chen and E. N. Jacobsen,
Angew. Chem., Int. Ed., 2006, 45, 6366; (f) N. Mase,
R. Thayumanavan, F. Tanaka and C. F. Barbas III, Org. Lett.,
2004, 6, 2527; (g) J. Wang, X. Wang, Z. Ge, T. Cheng and R. Li,
Chem. Commun., 2010, 46, 1751.
6 J. Deutsch, H.-J. Niclas and M. Ramm, J. Prakt. Chem., 1995, 337, 23.
7 F. G. Bordwell and J. Harrelson, Can. J. Chem., 1990, 68, 1714.
8 For reviews on bifunctional organocatalysis, see: (a) S. B. Tsogoeva,
Eur. J. Org. Chem., 2007, 1701; (b) Y. Takemoto, Org. Biomol. Chem.,
2005, 3, 4299; (c) S. J. Connon, Chem.–Eur. J., 2006, 12, 5418;
(d) A.-G. Doyle and E. N. Jacobsen, Chem. Rev., 2007, 107, 5713;
(e) H. Miyabe and Y. Takemoto, Bull. Chem. Soc. Jpn., 2008, 81, 785.
9 For reviews on bifunctional metallic catalysis, see:
(a) S. Matsunaga and M. Shibasaki, Bull. Chem. Soc. Jpn., 2008,
81, 60; (b) M. Shibasaki, M. Kanai, S. Matsunaga and
N. Kumagai, Acc. Chem. Res., 2009, 42, 1117; (c) V. Annamalai,
E. F. DiMauro, P. J. Carroll and M. C. Kozlowski, J. Org. Chem.,
2003, 68, 1973; (d) W. Hirahata, R. M. Thomas, E. B. Lobkovsky
and G. W. Coats, J. Am. Chem. Soc., 2008, 130, 17658.
10 (a) C.-J. Wang, Z.-H. Zhang, X.-Q. Dong and X.-J. Wu, Chem.
Commun., 2008, 1431; (b) Z.-H. Zhang, X.-Q. Dong, D. Chen and
C.-J. Wang, Chem.–Eur. J., 2008, 14, 8780; (c) C.-J. Wang,
X.-Q. Dong, Z.-H. Zhang, Z.-Y. Xue and H.-L. Teng, J. Am.
Chem. Soc., 2008, 130, 8606; (d) X.-Q. Dong, H.-L. Teng and
C.-J. Wang, Org. Lett., 2009, 11, 1265.
11 For other organocatalysts having multiple hydrogen bonding
donors, see: (a) R. P. Herrera, V. Sgarzani, L. Bernardi and
A. Ricci, Angew. Chem., Int. Ed., 2005, 44, 6576;
(b) Y. Sohtome, A. Tanatani, Y. Hashimoto and K. Nagasawa,
Tetrahedron Lett., 2004, 45, 5589; (c) A. Berkessel, K. Roland and
J. M. Neudorfl, Org. Lett., 2006, 8, 4195.
which comprises a core component of various biological active
compounds.17 An X-ray analysis of a crystal of 7 revealed
(2S,3S,4S) configuration for the three consecutive stereocenters
therefore also for the corresponding moiety in 6 (See ESI).z
In conclusion, we have developed the first asymmetric Michael
addition reaction of a-aryl cyclopentanones and nitroolefins
catalyzed by bifunctional amine-thiourea catalyst bearing multiple
hydrogen bonding donors. This catalytic system performs well
over a broad scope of substrates and provides the desired adducts
containing adjacent quaternary and tertiary stereogenic centers in
excellent diastereoselectivity (>98 : 2) and high enantioselectivity
(90–96% ee), and subsequent transformations led to expedient
preparation of synthetically useful cyclic imine, nitrone and fused
pyrrolidines. Further investigations of the scope and synthetic
application of this methodology are ongoing, and the results will
be reported in due course.
This work was supported by the National Natural Science
Foundation of China (20702039, 20972117), the Fundamental
Research Funds for the Central Universities, and SRFDP
(J0730426).
Notes and references
z Crystal data for (2S,3S)-3ad: C19H18BrNO3, Mr = 388.25, T = 293 K,
orthorhombic, space group P212121, a = 8.367(4), b = 13.132(6), c =
16.078(8) A, V = 1766.6(15) A3, Z = 4, 3435 reflections measured,
2914 unique (Rint = 0.0201) which were used in all calculations. The
final wR2 = 0.0922 (all data). Flack w = 0.011(10). For (2S,3S,4S)-7:
C26H27NO2S, Mr = 417.55, T = 293 K, orthorhombic, space group
P212121, a = 7.4773(6), b = 11.8993(9), c = 25.2455(19) A, V =
2246.2(3) A3, Z = 4, 4657 reflections measured, 3641 unique (Rint
=
12 (a) T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc.,
2003, 125, 12672; (b) T. Okino, Y. Hoashi, T. Furukawa, X. Xu
and Y. Takemoto, J. Am. Chem. Soc., 2005, 127, 119.
0.0364) which were used in all calculations. The final wR2 = 0.0787
(all data). Flack w = 0.05(7). CCDC 768128 (3ad), CCDC 768129 (7).
1 For recent reviews, see: (a) Quaternary Stereocenters: Challenges and
Solutions for Organic Synthesis, ed. J. Christoffers and A. Baro,
Wiley-VCH, Weinheim, 2005; (b) B. M. Trost and C. Jiang,
Synthesis, 2006, 369; (c) C. J. Douglas and L. E. Overman, Proc.
Natl. Acad. Sci. U. S. A., 2004, 101, 5363, references cited therein.
2 For selected examples of catalytic asymmetric conjugate addition of
a-substituted b-ketoesters for the construction of adjacent quaternary
and tertiary stereogenic centers, see: (a) H. Wynberg and R. Helder,
Tetrahedron Lett., 1975, 16, 4057; (b) Y. Hamashima, D. Hotta and
M. Sodeoka, J. Am. Chem. Soc., 2002, 124, 11240; (c) F. Wu, H. Li,
R. Hong and L. Deng, Angew. Chem., Int. Ed., 2006, 45, 947;
(d) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo,
B. M. Foxman and L. Deng, Angew. Chem., Int. Ed., 2005, 44, 105;
(e) T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto,
J. Am. Chem. Soc., 2005, 127, 119; (f) G. Bartoli, M. Bosco,
A. Carlone, A. Cavalli, M. Locatelli, A. Mazzanti, P. Ricci,
L. Sambri and P. Melchiorre, Angew. Chem., Int. Ed., 2006, 45,
13 (a) B. Vakulya, S. Varga, A. Csampai and T. Soos, Org. Lett.,
´ ´
2005, 7, 1967; (b) T. Marcelli, J. H. van Maarseveen and
H. Hiemstra, Angew. Chem., Int. Ed., 2006, 45, 7496;
(c) S. J. Connon, Chem. Commun., 2008, 2499.
14 Results of the solvent screening studies at room temperature:
CHCl3 (12 h, 89% yield, ee: 73%); EtOAc (12 h, 85% yield, ee:
71%); THF (13 h, 80% yield, ee: 66%); MeCN (15 h, 92% yield,
ee: 75%); acetone (16 h, 75% yield, ee: 76%); PhMe (19 h, 81%
yield, ee: 78%); MeOH (16 h, 83% yield, ee: 2%).
15 C. L. Cao, M.-C. Ye, X.-L. Sun and Y. Tang, Org. Lett., 2006, 8, 2901.
´ ´
16 I. H. Sanchez, M. I. Larraza, I. Rojas and F. K. Brena, Hetero-
cycles, 1985, 23, 3033.
17 (a) S. G. Pyne, A. S. Davis, N. J. Gates, J. Nicole, J. P. Hartley,
K. B. Lindsay, T. Machan and M. Tang, Synlett, 2004, 2670;
(b) S. Husinec and V. Savic, Tetrahedron: Asymmetry, 2005, 16,
2047; (c) O. Danilova, B. Li, A. K. Szardenings, B. T. Huber and
J. S. Rosenblum, Bioorg. Med. Chem. Lett., 2007, 17, 507.
c
6842 Chem. Commun., 2010, 46, 6840–6842
This journal is The Royal Society of Chemistry 2010