Page 7 of 9
ACS Catalysis
Angew. Chem. Int. Ed. 2014, 53, 2034-2036. l) Zhu, Y.; Cornwall, R.
The Supporting Information is available free of charge on the
ACS Publications website at DOI:
G.; Du, H.; Zhao, B.; Shi, Y., Catalytic Diamination of Olefins via
N-N Bond Activation, Acc. Chem. Res. 2014, 47, 3665-3678. m)
Chatalova-Sazepin, C.; Wang, Q.; Sammis, G. M.; Zhu, J., Copper-
catalyzed intermolecular carboetherification of unactivated
alkenes by alkyl nitriles and alcohols, Angew. Chem. Int. Ed. 2015,
54, 5443-5446. n) Liu, R.; Wang, Z.; Wei, B.; Zhang, J.; Zhou, B.;
Han, B., Cu-Catalyzed aminoacyloxylation of unactivated alkenes
of unsaturated hydrazones with manifold carboxylic acids toward
ester-functionalized pyrazolines, Org. Lett. 2018, 20, 4183-4186. o)
Xiong, Y.; Zhang, B.; Yu, Y.; Weng, J.; Lu, G., Construction of
sulfonyl phthalides via copper-catalyzed oxysulfonylation of 2-
vinylbenzoic acids with sodium sulfinates, J. Org. Chem. 2019, 84,
13465-13472. p) Zhang, H.; Mao, L.; Yang, B.; Yang, S., Copper-
catalyzed radical cascade cyclizations for the synthesis of
phosphorated indolines, Chem. Commun. 2015, 51, 4101-4105.
(9) Racemic Cu-catalyzed aerobic alkene difunctionalization and
related transformations: a) Oxyamination (with KI additive): Wu,
F.; Steward, S.; Ariyarathna, J. P.; Li, W. Aerobic copper-catalyzed
alkene oxyamination for amino lactone synthesis, ACS Catal.,
2018, 8, 1921-1925. b) Sulfenoamination: Ni, Y.; Zuo, H.; Li, Y.; Wu,
Y.; Zhong, F., Copper-catalyzed regioselective intramolecular
electrophilic sulfenoamination via Lewis acid activation of
disulfides under aerobic conditions, Org. Lett. 2018, 20, 4350-4353.
c) Iodolactonization: Aerobic catalytic features in photoredox-
and copper-catalyzed iodolactonization reactions, Org. Lett. 2018,
20, 6462-6466. d) Oxyamination (with KI additive): Wu, F.;
Ariyaratha, J. P.; Alom, N.; Kaur, N.; Li, W., Oxyamination of
unactivated alkenes with electron-rich amines and acids via a
catalytic triiodide intermediate, Org. Lett. 2020, 22, 884-890. e)
Liu, R.; Wei, D.; Han, B.; Yu, W., Copper-catalyzed oxidative
oxyamination/diamination of internal alkenes of unsaturated
oximes with simple amines, ACS Catal. 2016, 6, 6525-6530.
(10) Fuller, P. H.; Kim, J. W.; Chemler, S. R., Copper catalyzed
enantioselective intramolecular aminooxygenation of alkenes. J.
Am. Chem. Soc. 2008, 130, 17638-17639.
(11) a) Wdowik, T.; Chemler, S. R., Direct synthesis of 2-
formylpyrrolidines, 2-pyrrolidinones and 2-dihydrofuranones via
aerobic copper-catalyzed aminooxygenation and dioxygenation
of 4-pentenylsulfonamides and 4-pentenylalcohols. J. Am. Chem.
Soc. 2017, 139, 9515-9518. Related oxygenase reactions: b) Li, J.;
Wei, J.; Zhu, B.; Wang, T.; Jiao, N., Cu-catalyzed oxygenation of
alkene-tethered amides with O2 via unactivated C=C bond
cleavage: a direct approach to cyclic imides, Chem. Sci. 2019, 10,
9099. c) Liu, Z.; Wang, P.; Ou, H.; Yan, Z.; Chen, S.; Tan, X.; Yu,
D.; Zhao, X.; Mu, T., Preparation of cyclic imides from alkene-
tethered amides: application of homogeneous Cu(II) catalytic
systems, RSC Adv., 2020, 10, 7698.
(12) Liwosz, T. W.; Chemler, S. R., Copper-catalyzed synthesis of
N-aryl and N-sulfonyl indoles from 2-vinylanilines with O2 as
terminal oxidant and TEMPO as co-catalyst. Synlett 2015, 26, 335-
339.
(13) a) Zeng, W.; Chemler, S. R., Copper(II)-catalyzed
enantioselective intramolecular carboamination of alkenes, J. Am.
Chem. Soc. 2007, 129, 12948-12948. b) Miao, L.; Haque, I.;
Manzoni, M. R.; Tham, W. S.; Chemler, S. R., Diastereo- and
1
2
3
4
5
6
7
8
Experimental procedures and characterization of
new compounds (PDF)
NMR spectra (PDF)
ACKNOWLEDGMENT
We thank the National Institutes of Health for financial
support (GM 078383).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Cavani, F.; Teles, J. H., Sustainability in catalytic oxidation: an
alternative approach or a structural evolution? Chemsuschem
2009, 2, 508-534.
(2) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D.
H. B., Large-scale oxidations in the pharmaceutical industry.
Chem. Rev. 2006, 106, 2943-2989.
(3) McCann, S. D.; Stahl, S. S., Copper-catalyzed aerobic
oxidations of organic molecules: pathways for two-electron
oxidation with a four-electron oxidant and a one-electron redox-
active catalyst. Acc. Chem. Res. 2015, 48, 1756-1766.
(4) Liang, Y. J.; Wei, J. L.; Qiu, X.; Jiao, N., Homogeneous
oxygenase catalysis. Chem. Rev. 2018, 118, 4912-4945.
(5) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S., Copper-catalyzed
aerobic oxidative C–H functionalizations: trends and mechanistic
insights. Angew. Chem. Int. Ed. 2011, 50, 11062-11087.
(6) Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I., Copper-
promoted functionalization of organic molecules: from
biologically relevant Cu/O2 model systems to organometallic
transformations. Chem. Rev. 2019, 119, 2954-3031.
(7) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M.
C., Aerobic copper-catalyzed organic reactions. Chem. Rev. 2013,
113, 6234-6458.
(8) a) Chemler, S. R.; Karyakarte, S. D.; Khoder, Z. M.,
Stereoselective and regioselective synthesis of heterocycles via
copper-catalyzed additions of amine derivatives and alcohols to
alkenes, J. Org. Chem. 2017, 82, 11311-11325. b) Zhu, X.; Chiba, S.,
Copper-catalyzed oxidative carbon–heteroatom bond formation:
a recent update, Chem. Soc. Rev. 2016, 45, 4504-4523. c) Wang, F.;
Chen, P.; Liu, G. Copper-catalyzed radical relay for aymmetric
radical transformations, Acc. Chem. Res. 2018, 51, 2036-2046. d)
Zhu, R.; Buchwald, S. L., Versatile enantioselective synthesis of
functionalized
lactones
via
copper-catalyzed
radical
oxyfunctionalization of alkenes, J. Am. Chem. Soc. 2015, 137, 8069-
8077. e) Lu, M.; Wang, C.; Loh, T., Copper-catalyzed vicinal
oxyazidation and diazidation of styrenes under mild conditions:
access to alkyl azides, Org. Lett. 2015, 17, 6110-6113. f) Fumagalli,
G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F., Three-component
azidation of styrene-type double bonds: light-switchable behavior
of a copper photoredox catalyst, Angew. Chem. Int. Ed. 2015,
54,11481-11484. g) Nakanishi, M.; Minard, C.; Retailleau, P.; Cariou,
K.; Dodd, R. H., Copper(I) catalyzed regioselective asymmetric
alkoxyamination of aryl enamide derivatives, Org. Lett. 2011, 13,
5792-5795. h) Li, Y.; Zheng, G.; Zhang, Q., Copper-catalyzed
aminooxygenation of styrenes with N-fluorobenzenesulfonimide
and N-hydroxylphthalimide derivatives, Beilstein J. Org. Chem.
2015, 11, 2721-2726. i) Benkovics, T.; Du, J.; Guzei, I. A.; Yoon, T. P.,
Anionic halocuprate(II) complexes as catalysts for the
oxaziridine-mediated aminohydroxylation of olefins, J. Org.
Chem. 2009, 74, 5545-5552. j) Hemric, B. N.; Shen, K.; Wang, Q.,
Copper-catalyzed amino lactonization and amino oxygenation of
alkenes using O-benzoylhydroxylamines, J. Am. Chem. Soc. 2016,
138, 5813-5816. k) Hesp, K. D., Copper-catalyzed regio- and
enantioselective hydroamination of alkenes with hydroxylamines,
enantioselective
copper-catalyzed
intramolecular
carboamination of alkenes for the synthesis of hexahydro-1H-
benz[f]indoles, Org. Lett. 2010, 12, 4739-4741. c) Miller, Y.; Miao,
L.; Hosseini, A. S.; Chemler, S. R., Copper-catalyzed
intramolecular alkene carboetherification: synthesis of fused-ring
and bridged-ring tetrahydrofurans, J. Am. Chem. Soc. 2012, 134,
12149-12156. d) Bovino, M. T.; Liwosz, T. W.; Kendel, N. E.; Miller,
Y.; Tyminska, N.; Zurek, E.; Chemler, S. R., Enantioselective
copper-catalyzed carboetherification of unactivated alkenes,
Angew. Chem. Int. Ed. 2014, 53, 6383-6387. e) Karyakarte, S. D.;
7
ACS Paragon Plus Environment