Fluorescent Analogues of the Insect Neuropeptide Helicokinin I
Protein & Peptide Letters, 2010, Vol. 17, No. 4 435
Veelaert, D.; Boon, D.; Van De Water, G.; Waelkens, E.; Derua,
R.; Calderón, J.; De Loof, A.; Schoofs, L. The kinin peptide family
in invertebrates. Ann. N.Y. Acad. Sci., 1999, 897, 361-373.
a) Blackburn, M.B.; Wagner, R.M.; Shabanowitz, J.; Kochansky,
J.P.; Hunt, D.F.; Raina, A.K. The isolation and identification of
three diuretic kinins from the abdominal ventral nerve cord of adult
Helicoverpa zea. J. Insect Physiol., 1995, 41, 723-730. b) Seinsche,
A.; Dyker, H.; Lösel, P.; Backhaus, D.; Scherkenbeck, J. Effect of
helicokinins and ACE inhibitors on water balance and development
of Heliothis virescens larvae. J. Insect Physiol., 2000, 46, 1423-
1431.
consistent with a type-I ꢀ-turn. Bradykinin is anchored in the
micelles mainly by the two lipophilic phenylalanine residues.
[9]
Taking all these findings into account helicokinin I is
supposed to adopt a C-terminal ꢀ-turn by interaction with a
membrane. The lipophilic amino acids tryptophan and phen-
ylalanine which are located on the same side of the peptide
backbone anchor the peptide in the membrane, while tyro-
sine points to the aqueous phase (Fig. 3).
[10]
[11]
[12]
Royer, C.A. Probing protein folding and conformational transitions
with fluorescence. Chem. Rev., 2006, 106, 1769-1784.
Yan, Y.; Marriott, G. Analysis of protein interactions using fluo-
rescence technologies. Curr. Opin. Chem. Biol., 2003, 7, 635-640.
Loidl, G.; Musiol, H.-J.; Budisa, N.; Huber, R.; Poirot, S.; Fourmy,
D.; Moroder, L. Synthesis of ꢀ-(1-Azulenyl)-L-alanine as a poten-
tial blue-coloured fluorescent tryptophan analogue and its use in
peptide synthesis. J. Pept. Sci., 2000, 6, 139-144.
[13]
[14]
[15]
Cohen, B.E.; McAnaney, T.B.; Park, E.S.; Jan, Y.N.; Boxer, S.G.;
Jan L.Y. Probing protein electrostatics with a synthetic fluorescent
amino acid. Science, 2002, 296, 1700-1703.
Chen, H.; Zhong, X.; Wei, J. Stereoselective syntheses of
fluorescent non-natural aromatic amino acids based on asymmetric
Michael additions. Molecules, 2007, 12, 1170-1182.
Scherkenbeck, J.; Antonicek, H.-P.; Vogelsang, K.; Zdobinsky, T.;
Brücher, K.; Rehländer, D.; Chen, H. Receptor assay guided struc-
ture-activity studies of helicokinin insect neuropeptides and pepti-
domimetic analogues. J. Pept. Sci., 2009, 15, 783-789.
[16]
[17]
[18]
[19]
[20]
Schwyzer, R. 100 Years lock-and-key concept: Are peptide keys
shaped and guided to their receptors by the target cell membrane?
Pept. Sci., 1995, 37, 5-16.
Bader, R.; Zerbe, O. Are hormones from the neuropeptide Y family
recognized by their receptors from the membrane-bound state?
ChemBioChem, 2005, 6, 1520-1534.
Fiori, S.; Renner, C.; Cramer, J.; Pegoraro, S.; Moroder, L. Pre-
ferred conformation of endomorphin-1 in aqueous and membrane-
mimetic environments. J. Mol. Biol., 1999, 291, 163-175.
Jia, C.; Haines, A.H. Diamide analogues of phosphatidyl choline as
potential anti-AIDS agents. J. Chem. Soc., Perkin Trans., 1993,
2521-2523.
a) Tanford, C. The Hydrophobic Effect: Formation of Micelles and
Biological Membrane, 2nd Ed., John Wiley & Sons: New York,
1980. b) Brown, L.R.; Braun, W.; Kumar, A.; Wüthrich, K. High
resolution nuclear magnetic resonance studies of the conformation
and orientation of melittin bound to a lipid-water interface. Bio-
phys. J., 1982, 37, 319-328.
Figure 3. Model for the membrane-bound conformation of helicok-
inin I
In conclusion, a qualitative membrane-binding model of
the insect neuropeptide helicokinin I has been suggested by
fluorescence measurements of neuropeptide analogues con-
taining dielectrically sensitive amino acid mimetics. Future
work will focus on biologically highly active fluorescent
tryptophan analogues as probes for the identification of heli-
cokinin receptors in Malpighian tubule cells.
ACKNOWLEDGEMENTS
This work was supported by a grant from the Heinrich-
Hertz foundation and the Deutsche Forschungsgemeinschaft
(SCHE 301/2-2)
[21]
[22]
Antonicek, H.-P.; Schnizler, K.; Weidler, M. PCT Int. Appl. 2003,
WO 2003087356 A2 20031023.
REFERENCES
Cox, K.J.A.; Tensen, C.P.; Van der Schors, R.C.; Li, K.W.; van
Heerikhuizen, H.; Vreugdenhil, E.; Geraerts, W.P.M.; Burke, J.F.
Cloning, characterization, and expression of a G-protein-coupled
receptor from Lymnaea stagnalis and identification of a leucokinin-
like peptide, PSFHSWSamide, as its endogenous ligand. J. Neuro-
sci., 1997, 17, 1197-1205.
Fitch, R.W.; Xiao Y.; Kellar K.J.; Daly J.W. Membrane potential
fluorescence: a rapid and highly sensitive assay for nicotinic recep-
tor channel function. Proc. Acad. Nat. Sci., 2003, 100, 4909-4914.
Mc Loughlin, D.J.; Bertelli, F.; Williams, C. The A, B, Cs of G-
protein-coupled receptor pharmacology in assay development for
HTS. Expert Opin. Drug Discov., 2007, 2, 603-619.
Corey, E.J.; Xu, F.; Noe, M.C. A rational approach to catalytic
enantioselective enolate alkylation using a structurally rigidified
and defined chiral quaternary ammonium salt under phase transfer
conditions. J. Am. Chem. Soc., 1997, 119, 12414-12415.
a) Guzow, K.; Rzeska, A.; Mrozek, J.; Karolczak, J.; Majewski, R.;
Szabelski, M.; Ossowski, T.; Wiczk, W. Photophysical properties
of tyrosine and its simple derivatives in organic solvents studied by
time-resolved fluorescence spectroscopy and global analysis. Pho-
tochem. Photobiol., 2005, 81, 697-704.
[1]
Gäde, G. Structure, function and mode of action of select arthropod
neuropeptides. Stud. Nat. Prod. Chem., 2006, 33, 69-139.
Mercier, J.; Doucet, D.; Retnakaran, A. Molecular physiology of
crustacean and insect neuropeptides. J. Pestic. Sci., 2007, 32, 345-
359.
[2]
[3]
[4]
Claeys, I.; Poels, J.; Simonet, G. Insect neuropeptide and peptide
hormone receptors: Current knowledge and future directions. Vita-
mins Hormones, 2005, 73, 217-282.
Hauser, F.; Cazzamali, G.; Williamson, M.; Blenau, W.; Grimme-
likhuijzen, C.J.P. A review of neurohormone GPCRs present in the
fruitfly Drosophila melanogaster and the honey bee Apis mellifera.
Prog. Neurobiol., 2006, 80, 1-19.
[23]
[24]
[25]
[5]
[6]
Altstein, M. Novel insect control agents based on neuropeptide
antagonists: The PK/PBAN family as a case study. J. Mol. Neuro-
sci., 2004, 22, 147-157.
Maser, E.P.; Kelly, T.J.; Menn, J.J. Insect neuropeptides: Discov-
ery and application in insect management. Arch. Insect Biochem.
Physiol., 1993, 22, 87-111.
[26]
[27]
[7]
[8]
Coast, G.M.; Garside, C.S. Neuropeptide control of fluid balance in
insects. Ann. N.Y. Acad. Sci., 2005, 1040, 1-8.
a) Scherkenbeck, J.; Zdobinsky, T. Insect neuropeptides: Struc-
tures, chemical modifications and potential for insect control.
Bioorg. Med. Chem., 2009, 17, 4071-4084. b) Torfs, P.; Nieto, J.;
Feitelson, J. On the mechanism of fluorescence quenching. Tyro-
sine and similar compounds. J. Phys. Chem., 1964, 68, 391-397.