for catalytic activity and, as we discuss below, the catalyst
shows excellent properties, suggesting that our 6-NHC ligand
provides the necessary electronic and steric characteristics.
The conjugate addition of boron to electron-poor alkenes
(ꢀ-borylation) provides access to intermediates useful in the
construction of complex products. Prior studies reveal that
copper(I) catalysts yield ꢀ-borylations with greater selectivity
than other transition metals,6,7 presumably via a Cu-B
species.8,9 Though both chiral phosphine and 5-NHCs are
competent ligands for copper(I)-catalyzed ꢀ-borylations,
phosphine catalysts generally have exhibited higher enanti-
oselectivity.7 Hoveyda’s group, however, used a 5-NHC-
copper complex to hydroborate trisubstituted electron-poor
alkenes and styrenic alkenes with high yield and
selectivity,7a,10a and also demonstrated an organocatalytic
method requiring only a NHC to catalyze ꢀ-borylations.10b
Thus far, no 6-NHC-copper complexes induce high enanti-
oselectivity for ꢀ-borylation reactions. On the basis of the
reported success of copper(I)-catalyzed ꢀ-borylations, we
chose this reaction as a model for determining if our 6-NHC
ligand could induce high enantioselection.
Table 1. Substrate Scope for ꢀ-Borylated Ester Synthesisa
Exploratory studies11 revealed that 4 is a highly active
catalyst for ꢀ-borylations, providing complete consumption
of starting materials within 1 min (1 mol % catalyst; 0 °C)
in diethyl ether to give 78% ee of the desired product.
Optimization revealed that higher selectivity could be realized
at -55 °C and that methanol was a necessary additiVe.
Complex 4 was successful at transforming a variety of
aliphatic and aromatic R,ꢀ-unsaturated esters to ꢀ-borylated
products in high yield and enantioselectivity (Table 1). Linear
aliphatic substrates such as ethyl hexenoate and ethyl
octenoate had high enantioselectivities of 90% and 91%,
respectively (entries 2 and 3). Increased γ-branching was
also well tolerated (entries 4-6). Methyl cinnamate gave the
highest ee (87% ee) among the methyl, ethyl, and isobutyl
a Reactions run under N2 atm and repeated more than 2 times. b Isolated
yields. c Determined by GC or HPLC after oxidizing the boronate to alcohol
by the treatment with H2O2/NaOH. d Toluene as solvent. e 3 mol % catalyst
was used. f Reactions run at -30 °C.
esters of cinnamic acid, which is opposite to the crotonate
esters (90% ee) (entries 1 and 7).11 Ortho-substituted
cinnamate esters also showed high selectivity (entries 9 and
10). These data indicate that the 6-NHC ligand induces high
enantioselectivity.
(5) (a) Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.; Lee,
H.; Li, Z.; Liang, M.; Reeves, D.; Saha, A.; Varsolona., R.; Senanayake,
C. H. Org. Lett. 2008, 10, 341. (b) Davis, E. M.; Nanninga, T. N.; Tjiong,
H. I.; Winkle, D. D. Org. Process Res. DeV. 2005, 9, 843. (c) Jurkauskas,
To quantify the activity of 4, we reduced the catalyst
loading (Table 2). At 0.01 mol % of 4, the reaction proceeded
V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 5, 2417
.
(6) (a) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett.
2000, 41, 6821. (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet.
Chem. 2001, 625, 47. (c) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8,
Table 2. Catalyst Loading Experiment
4887. (d) Lee, J.-E.; Kwon, J.; Yun, J. Chem. Commun. 2008, 733
.
(7) (a) O’Brien, J. M.; Lee, K.-s.; Hoveyda, A. H. J. Am. Chem. Soc.
2010, 132, 10630. (b) Schiffner, J. A.; Mu¨ther, K.; Oestreich, M. Angew.
Chem., Int. Ed. 2010, 49, 1194. (c) Feng, X.; Yun, J. Chem. Commun. 2009,
6577. (d) Chen, I.-H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2009, 131, 11664. (e) Sim, H.-S.; Feng, X.; Yun, J. Chem.sEur.
J. 2009, 15, 1939. (f) Lillo, V.; Prieto, A.; Bonet, A.; Dia´z-Requejo, M. M.;
Ramie´z, J.; Per´ez, P. J.; Ferna´ndez, E. Organometallics 2009, 28, 659. (g)
Fleming, W. J.; Mu¨ller-Bunz, H.; Lillo, V.; Ferna´ndez, E.; Guiry, P. J. Org.
Biomol. Chem. 2009, 7, 2520. (h) Lee, J.-E.; Yun, J. Angew. Chem., Int.
entry ester mol % time (min) convn (%)d ee (%) TON
1a
2a
3b
4b
5c
44 mg 10
44 mg
0.44 g 0.1
0.44 g 0.05
<1
<1
3
80
100
>99
>99
>99
92
91
88
87
88
10
100
1 000
2 000
10 000
1
Ed. 2008, 47, 145
.
(8) (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006,
128, 11036. (b) Laitar, D. S.; Mu¨ller, P.; Sadighi, J. P. J. Am. Chem. Soc.
>99
2.0 g
0.01
>99 (93)e
2005, 127, 17196
.
(9) (a) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. J. Am. Chem. Soc.
2008, 130, 5586. (b) Dang, L.; Lin, Z.; Marder, T. B. Chem. Commun.
2009, 3987. (c) Lillo, V.; Bonet, A.; Ferna´ndez, E. Dalton Trans. 2009,
a 0.2 M. b 0.4 M. c 0.8 M. d Determined by GC. e Isolated yield.
2899. (d) Dang, L.; Lin, Z.; Marder, T. B. Organometallics 2008, 27, 4443
(10) (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160.
(b) Lee, K.-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
.
within 100 min with high yield and enantioselectivity (entry
5). Though NHC-copper catalysts are known to provide very
high turnover numbers (TONs),12 we are unfamiliar with an
asymmetric case with this activity.
131, 7253
(11) See the Supporting Information.
.
(12) Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2008, 47,
8881.
5010
Org. Lett., Vol. 12, No. 21, 2010