5458
P. Theerthagiri, A. Lalitha / Tetrahedron Letters 51 (2010) 5454–5458
Table 2
and 4-hydroxycoumarin with various benzylic alcohols as benzy-
lating agents, using TMSOTf as catalyst.27,28 Operational simplicity
and good-to-excellent yields are the key features of this protocol.
TMSOTf-catalyzed alkylation of 4-hydroxycoumarin under the optimum conditions
Entrya
Alcohol
OH
Product
Timeb (h)
Yieldc (%)
Acknowledgments
1
5a
0.5
91
The authors are grateful to Dr. Goutham Das, Bangalore, for giv-
ing permission to carry out the research work.
OH
2
3
4
5b
5c
5d
0.5
0.5
0.5
83
71
81
Supplementary data
MeO
F
OMe
OH
Supplementary data associated with this article can be found, in
F
OH
References and notes
Cl
Cl
1. (a) Corey, E. J. Angew. Chem., Int. Ed. 1991, 30, 455–465; (b) Chemler, S. R.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4544–4568.
2. (a) Prout, F. S.; Huang, E. P. Y.; Hartamn, R. J.; Korpies, C. J. J. Am. Chem. Soc.
1954, 76, 1911–1913; (b) Wang, G. W.; Shen, Y. B.; Wu, X. L. Eur. J. Org. Chem.
2008, 4999–5004.
3. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
Oxford, 1991; Vol. 3,.
4. Muzart, J. Tetrahedron 2005, 61, 4179–4212.
5. Mukhopadhyay, M.; Iqbal, J. Tetrahedron Lett. 1995, 36, 6761–6764.
6. (a) Baruah, J. B.; Samuelson, A. G. J. Organomet. Chem. 1989, 361, 57–60; (b) Li,
Y.; Yu, Z.; Wu, S. J. Org. Chem. 2008, 73, 5647–5650.
7. Bisaro, F.; Pretat, G.; Vitale, M.; Poli, G. Synlett 2002, 1823.
8. Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793.
9. Vicennati, P.; Cozzi, P. G. Eur. J. Org. Chem. 2007, 2248–2253.
10. (a) Jana, U.; Biswas, S.; Maiti, S. Tetrahedron Lett. 2007, 48, 4065. and references
cited therein; (b) Salehi, P.; Iranpoor, N.; Behbahani, F. K. Tetrahedron 1998, 54,
943.
11. Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825–828.
12. (a) Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72, 5161–5167; (b)
Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Tetrahedron Lett. 2007, 48, 3969–
3973.
13. Sang, R.; Martinez, A.; Miguel, D.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Adv.
Synth. Catal. 2006, 348, 1841.
OH
OH
5
6
7
5e
5f
0.5
0.5
0.5
87
71
60
OH
5g
OH
8
5h
0.45
55
Cl
Br
OH
OH
9
5i
5j
0.5
1.0
78
50
14. Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311–314.
15. Rao, W.; Tay, A. H. L.; Goh, P. J.; Choy, J. M. L.; Ke, J. K.; Chan, P. W. H.
Tetrahedron Lett. 2008, 49, 122–126.
16. Yadav, J. S.; Subba reddy, B. V.; Pandurangam, T.; Rao, K. V. R.; Praneeth, K.;
Narayanakumar, G. G. K. S.; Madavi, C.; Kunwar, A. C. Tetrahedron Lett. 2008, 49,
4296–4301.
O
10
a
b
c
17. Reddy, C. R.; Jithender, E. Tetrahedron Lett. 2009, 50, 5633–5635.
18. Hollis, T. K.; Bosnich, B. J. Am. Chem. Soc. 1995, 117, 4570–4581.
19. Poon, K. W. C.; Lovell, K. M.; Dresner, K. N.; Datta, A. J. Org. Chem. 2008, 73, 752–
755.
Alcohol (1 mmol), 4-hydroxycoumarin (1 equiv), TMSOTf (15 mol %) at rt.
Reaction monitored by TLC.
Isolated yield.
20. Ogoshi, S.; Tomiyasu, S.; Mortita, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124,
11598–11599.
21. (a) Ravichandran, S. Synth. Commun. 2001, 31, 2345–2350; (b) Theerthagiri, P.;
Lalitha, A.; Arunachalam, P. N. Tetrahedron Lett. 2010, 51, 2813–2819.
22. (a) Garazd, M. M.; Garazd, Y. L.; Khilya, V. P. Khim. Prir. Soedin. 2003, 39, 47; (b)
Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.; Bean, M. F.; Taylor,
P.; Westley, J. W. J. Med. Chem. 1993, 36, 4131.
Ar
Ar
O
A
TMSOTf
23. (a) Raj, G.; Kumar, R.; Mckinney, W. P. Am. J. Med. Sci. 1994, 307, 128; (b)
Hadler, M. R.; Shadbolt, R. S. Nature 1975, 253, 275.
O
TMSOTf
2
H
-
24. (a) Chen, D. U.; Kuo, P. Y. Bioorg. Med. Chem. Lett. 2005, 15, 2665; (b) Kischel, J.;
Michalic, D.; Zapf, A.; Beller, M. Chem. Asian J. 2007, 2, 909.
25. Reddy, C. R.; Srikanth, B.; Narsimha, R.; Shin, D. S. Tetrahedron 2008, 64, 11666.
26. Lin, X.; Dai, X.; Mao, Z.; Wang, Y. Tetrahedron 2009, 65, 9233–9237.
27. General experimental procedure for the TMSOTf-catalyzed alkylation of 1,3-
dicarbonyl compounds: To a mixture of alcohol (1 mmol) and 1,3-dicarbonyl-
compound (2 mmol) in nitro methane (10 vol), TMSOTf (15 mol %) was added
drop wise. The reaction mixture was stirred at room temperature for 30 min.
After completion of the reaction (monitored by TLC), water was added and
extracted with EtOAc, the organic layer was separated and washed with water,
brine and dried over sodium sulfate and concentrated to furnish the desired
compound. When necessary, the obtained crude sample was purified by column
chromatography.
OH
TMSOTf
H2O
O
O
Ar
Ar
-H+
B
1
R2
Ar
R1
O
O
OH
O
3
R2
R1
R1
R2
2
C
Scheme 3. Plausible mechanism for the TMSOTf-catalyzed benzylation.
28. General experimental procedure for the C3-alkylation of 4-hydroxycoumarins: To a
mixture of 4-hydroxycoumarin (1.0 mmol) and secondary benzyl alcohol
(1.2 mmol) in a MeNO2 (10 ml), TMSOTf (0.15 mmol) was added and the
reaction mixture was stirred for the given time (see Table 2) at room
temperature. After completion of the reaction (monitored by TLC), to the
reaction mixture was added water and extracted with ethyl acetate, the
combined organic phase was dried over anhydrous sodium sulfate and
evaporated under vacuum. The residue was purified by silica gel column
with hexane/ethyl acetate as eluent to afford the corresponding C3-alkylated
4-hydroxycoumarin.
release of proton. Support for this second mechanism was obtained
from the isolation of the symmetric ether at the initial stages (with
in 10 min) whose structure was confirmed by NMR and which after
appropriate time (mentioned in Table 1) was fully converted to the
corresponding alkylated products.
In summary, we have described a simple, convenient, and novel
methodology for the direct benzylation of b-dicarbonyl compounds