Z. Rankovic et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6237–6241
6241
We started by replacing the amine group in 1 with a range of
alternative solubilising groups, such as the OH in 9d. This com-
pound displayed catK potency similar to that of lead compound
1, and acceptable solubility (60 mg/L). Importantly, the less lipo-
philic 9d (Table 2) was found to be practically devoid of hERG bind-
nent (IC50 = 16 nM) was not considered detrimental, but poten-
tially beneficial for this programme. We hypothesised that
inhibition of cathepsin S, recently linked to the reversal of neuro-
pathic pain15, may prove beneficial for the management of chronic
pain associated with osteoporosis.16
ing (Ki = 31
l
M). Disappointingly, however, the compound
In cardiovascular safety studies in conscious pig 23 produced no
significant electrocardiographic or hemodynamic effect when
dosed orally up to 40 mg/kg (Cmax = 2650 nM). The compound
was clean in the Ames test at concentrations of up to and including
100 lM in both the absence and presence of rat liver S9 fraction,
and showed no significant adverse reaction in a 2-week safety
displayed poor inhibition in the ROC assay (IC50 = 686 nM), proba-
bly due to poor permeability (Caco-2, AB <20 nm/s), as well as poor
pharmacokinetic properties, all of which proved difficult to opti-
mise. Alternative replacements such as the carboxylic and amide
groups in 10 and 11 (Table 2), led to reduction in both catK and
hERG potency. Interestingly, amide 11 retained a moderate hERG
block (c log P = 3.2). Its direct analogue 12 further demonstrated
the importance of the basic amine for binding to both hERG and
catK (Table 3).
Compounds 13–19 indicated that significant attenuation of only
one of the two parameters, c log P or pKa, is unlikely to be sufficient
to exert the desired effect on hERG binding. In fact, an analysis of
all hERG data within this series suggested that the targeted hERG
study in rats (po up to 100 mg/kg).
In summary, several crystal structure-guided optimisation
strategies were explored in order to improve the hERG selectivity
profile of lead compound 1 (ꢁ40-fold). Ultimately, attenuation of
c log P and pKa properties proved a successful approach and led
to the discovery of a potent catK inhibitor 23, which, in addition
to the desired selectivity over hERG (>1000-fold), displayed an
attractive overall in vitro and in vivo profile. More detailed pre-
clinical data discussing the efficacy of this compound on bone
resorption markers in primates will be reported elsewhere.
potency (Ki >3 lM) is most likely to be achieved for compounds
with c log P <2 and pKa <7.5. This afforded a very narrow window
of opportunity, particularly since pushing these parameters a little
further below these levels would start impacting on cellular per-
meability and, consequently, on potency in the functional assay
and, in addition, on pharmacokinetic properties. For example, gly-
cine analogue 20 (c log P = À0.4) displayed a good catK/hERG selec-
tivity margin, but showed poor permeability (Papp <22 nm/s) and,
inevitably, it proved inactive in the ROC assay. Still, encouraged
by the selectivity profile of this compound, we synthesized a num-
ber of closely related analogues designed to yield improved perme-
ability. Bioisosteric replacements such as the tetrazole in 21
maintained the favourable selectivity profile of 20, but showed lit-
tle improvement in the ROC assay (IC50 = 1640 nM). A break-
through in our efforts came with the synthesis of primary amide
22, which demonstrated a fitting c log P/pKa profile (1.2 and 7.4,
Acknowledgement
We thank Han Kok and Wim Koot for running fermentors to
produce cathepsin K protein.
References and notes
1. (a) Bonnick, S. L. Clin. Cornerstone 2006, 8, 28; (b) Rosen, C. J.; Klibanski, A. Am. J.
Med 2009, 122, 409.
2. For recent reviews see: (a) Grabowska, U. B.; Chambers, T. J.; Shiroo, M. Curr.
Opin. Drug Discov. Devel. 2005, 8, 619; (b) Rosen, C. J.; Klibanski, A. Am. J. Med.
2009, 122, 409; (c) Cai, J.; Jamieson, C.; Moir, J.; Rankovic, Z. Expert Opin. Ther.
Pat. 2005, 15, 33; (d) Deal, C. Curr. Opin. Rheumatol. 2009, 21, 380.
3. (a) Kumar, S.; Dare, L.; Vasko-Moser, J. A.; James, I. E.; Blake, S. M.; Rickard, D. J.;
Hwang, S.-M.; Tomaszek, T.; Yamashita, D. S.; Marquis, R. W.; Oh, H.; Jeong, J.
U.; Veber, D. F.; Gowen, M.; Lark, M. W.; Stroup, G. Bone 2007, 40, 122; (b)
Stoch, S. A.; Zajic, S.; Stone, J.; Miller, D. L.; Van Dyck, K.; Gutierrez, M. J.; De
Decker, M.; Liu, L.; Liu, Q.; Scott, B. B.; Panebianco, D.; Jin, B.; Duong, L. T.;
Gottesdiener, K.; Wagner, J. A. Clin. Pharmacol. Ther. 2009, 86, 175.
4. Rankovic, Z.; Cai, J.; Kerr, J.; Fradera, X.; Robinson, J.; Mistry, A.; Hamilton, E.;
McGarry, G.; Andrews, F.; Caulfield, W.; Cumming, I.; Dempster, M.; Waller, J.;
Scullion, P.; Martin, I.; Mitchell, A.; Long, C.; Baugh, M.; Westwood, P.;
Kinghorn, E.; Bruin, J.; Hamilton, W.; Uitdehaag, J.; van Zeeland, M.; Potin, D.;
Saniere, L.; Fouquet, A.; Chevallier, F.; Deronzier, H.; Dorleans, C.; Nicolai, E.
Bioorg. Med. Chem. Lett. 2010, 20, 1524.
respectively). This compound yielded not only
a catK/hERG
selectivity margin of 500-fold, but also showed a high potency in
the ROC assay (IC50 = 49 nM). Further progression of 22 was, how-
ever, prevented by its poor plasma stability—a consequence of
rapid hydrolysis of the amide group by plasma peptidases
(t1/2 = 65 min). Introduction of alpha substitution in compounds
23–27 markedly improved plasma stability without affecting the
desired catK/hERG/ROC profile (plasma t1/2 ꢀ150 min). The most
promising overall profile was displayed by gem-dimethyl analogue
23 (Table 4).
5. Redfern, W. S.; Carlsson, L.; Davis, A. S.; Lynch, W. G.; MacKenzie, I.; Palethorpe,
S.; Siegl, P. K. S.; Strang, I.; Sullivan, A. T.; Wallis, R.; Camm, A. J.; Hammond, T.
G. Cardiovasc. Res. 2003, 58, 32.
6. Frith, J. C.; Rogers, M. J. J. Bone Miner. Res. 2003, 18, 204.
This compound showed high selectivity over closely related
cathepsins B and L, and no significant interactions at a concentra-
tion of 10 lM in a broader selectivity panel of 65 receptors, ion
7. Redfern, W. S.; Carlsson, L.; Davis, A. S.; Lynch, W. G.; MacKenzie, I.; Palethorpe,
S.; Sieglf, P. K. S.; Stranga, I.; Sullivang, A. T.; Wallish, R.; Cammi, A. J.;
Hammonda, T. G. Cardiovasc. Res. 2003, 58, 32.
8. (a) Mitcheson, J. S.; Chen, J.; Lin, M.; Culberson, C.; Sanguinetti, M. C. Proc. Natl.
Acad. Sci. U.S.A. 2000, 97, 12329; (b) Fernandez, D.; Ghanta, A.; Kauffman, G. W.;
Sanguinetti, M. C. J. Biol. Chem. 2004, 279, 10120.
channels, enzymes and nuclear receptors. The cathepsin S compo-
9. Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. J. Med. Chem. 2006, 49, 5029.
10. Synthesis of 3–8 (Table 1) was carried out according to the general synthetic
route described in Ref. 4.
Table 4
Potency, selectivity and pharmacokinetic data for 23
11. Aronov, A. M. J. Med. Chem. 2006, 49, 6917.
12. (a) Leeson, P.; Springthorpe, B. Nat. Rev. Drug Discov. 2007, 6, 881; (b) Hughes
et al., Bioorg. Med. Chem. Lett. 2008, 18, 4872.
13. Rasmussen, C. R.; Villani, F. J.; Reynolds, B. E.; Plampin, J. N.; Hood, A. R.;
Hecker, L. R.; Nortey, S. O.; Hanslin, A.; Costanzo, M. J.; Howse, R. M.; Molinari,
A. J. Synthesis 1988, 460.
14. Rissanen, J. P.; Ylipahkala, H.; Fagerlund, K. M.; Long, C.; Väänänen, H. K.;
Halleen, J. M. J. Bone Miner. Metab. 2009, 27, 105.
15. (a) Barclay, J.; Clark, A. K.; Ganju, P.; Gentry, C.; Patel, S.; Wotherspoon, G.;
Buxton, F.; Song, C.; Ullah, J.; Winter, J.; Fox, A.; Bevan, S.; Malcangio, M. Pain
2007, 130, 225; (b) Clark, A. K.; Yip, P. K.; Grist, J.; Gentry, C.; Staniland, A. A.;
Marchand, F.; Dehvari, M.; Wotherspoon, G.; Winter, J.; Ullah, J.; Bevan, S.;
Malcangio, M. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10655.
Parameter
Valuea
catK; catS; catB; catL IC50 (nM)
ROC; HOCc IC50 (nM)
3; 16; 2512; >10,000
30; 39
3.0
90; 140
393
>35
75–87
29
29
hERGb Ki (
lM)
Papp (Caco-2) AB; BA (nm/s)
Solubility of the HCl salt in PBS, pH 7.4 (mg/L)
CYP inhibition: 1A2; 2C9; 2C19; 3A4; IC50
PPB: human, rat, dog, pig, cyno (% bound)
Rat F (%); wistar, iv 2 mg/kg; po 10 mg/kg
Dog F (%); beagle, iv 0.78 mg/kg; po 1.96 mg/kg
Cyno F (%); iv 2 mg/kg; po 4.63 mg/kg
(l
M)
57
16. Ringe, J.; Faber, H.; Bock, O.; Valentine, S.; Felsenberg, D.; Pfeifer, M.; Minne, H.;
Schwalen, S. Rheumatol. Int. 2002, 22, 199.
17. c log P 4.10, BioByte Corp., 201 W. 4th St. #204 Claremont, CA 91711-4707, USA.
18. pKa’s calculated with ACD PhysChem Batch, version 4.76; Advanced Chemistry
Development: Toronto, ON, Canada.
a
Values represent means of at least two experiments performed in duplicate.
Manual patch clamp recordings in HEK293 cells stably expressing hERG
b
channel.
c
Human osteoclasts assay (HOC).14