Wu et al.
JOCNote
stereoselective hydrophosphonylation of aldehydes usually
involve high catalyst loading. Therefore, the further develop-
ment of novel catalysts and relevant processes of high efficiency
for the synthesis of R-hydroxy phosphonate as valuable small
molecule still remains of great interest.
TABLE 1. Catalysts Screening for the Reaction of Benzaldehyde with
Diethyl Phosphitea
Homoleptic bis(trimethylsilyl)amides of lanthanides
19
Ln[N(SiMe3)2]3 have been found to be efficient catalysts
entry
catalyst
loading (mol %) time yield (%)
for a series of intermolecular or intramolecular reactions,
including the Tishchenko reaction,20 amidation,21 monoad-
dition of terminal alkynes to nitriles,22 coupling reaction of
isocyanides with terminal alkynes,23 and dimerization of
terminal alkynes.24 They also show high activity as catalysts
for versatile hydroelementation processes such as hydrosilyla-
tion,25 hydroboration,26 hydroamination,20b,27 hydrophos-
phination,28 and hydroalkoxylation.29 The tetracoordinate
1
2
3
4
5
6
7
8
9
LaCl3
2.0
2.0
2.0
2.0
0.5
0.1
0.5
0.1
0.05
1.0
12 h
12 h
12 h
6 h
5 min
5 min
5 min
5 min
5 min
48 h
0
0
0
0
63
0
96
92
43
0
LaBr3
LaI3
Yb(OTf)3
La[N(SiMe3)2]3
La[N(SiMe3)2]3
[(Me3Si)2N]3La(μ-Cl)Li(THF)3
[(Me3Si)2N]3La(μ-Cl)Li(THF)3
[(Me3Si)2N]3La(μ-Cl)Li(THF)3
10 LiCl
lanthanide amides [(Me3Si)2N]3Ln( μ-Cl)Li(THF)3,30
a
aReactions were performed with 1 mmol of PhCHO and 1.2 mmol of
chloride-bridged “ate” complex derived from Ln[N(SiMe3)2]3,
also work well as catalysts for aldol condensation,31 MMA
polymerization,30c,d aza-Henry reaction,32 and guanylation of
amines.33 Although [(Me3Si)2N]3Ln( μ-Cl)Li(THF)3 is more
readily available than Ln[N(SiMe3)2]3 from the viewpoint of
the synthetic method, the application of the former as an efficient
catalyst is comparatively limited. In some instances reported, the
catalytic activities of the tricoordinate Ln[N(SiMe3)2]3 and
tetracoordinate [(Me3Si)2N]3Ln( μ-Cl)Li(THF)3 were com-
pared with each other. The results indicated that the existence
HOP(OEt)2 in 1 mL of toluene at 25 °C.
of LiCl in [(Me3Si)2N]3Ln( μ-Cl)Li(THF)3 may sometimes31,32
improve the activity of Ln[N(SiMe3)2]3 while at other times33
produce the opposite effect.
In continuation of our previous studies on lanthanide-
catalyzed carbon-nitrogen bond-forming reactions,34 we
investigated the effectiveness of lanthanide amides as cata-
lysts for the carbon-phosphorus bond-forming reactions.
Herein, the paper presents a highly efficient process afford-
ing R-hydroxy phosphonates by the lanthanide amides-
catalyzed Pudovik reaction.
ꢀ
ꢀ
(18) (a) Merino, P.; Marques-Lopez, E.; Herrera, R. P. Adv. Synth. Catal.
2008, 350, 1195. (b) Yang, F.; Zhao, D.; Lan, J.; Xi, P.; Yang, L.; Xiang, S.;
You, J. Angew. Chem., Int. Ed. 2008, 47, 5646. (c) Suyama, K.; Sakai, Y.;
Matsumoto, K.; Saito, B.; Katsuki, T. Angew. Chem., Int. Ed. 2009, 48, 1. (d)
Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 10521. (e)
Uraguchi, D.; Ito, T.; Ooi, T. J. Am. Chem. Soc. 2009, 131, 3836.
The addition of diethyl phosphite to benzaldehyde to
afford diethyl [hydroxy(phenyl)methyl]phosphonate was
used as the model reaction in our initial screening of potential
lanthanide catalysts. As shown in Table 1, typical Lewis acid-
type compounds such as lanthanum trihalides (LaX3, X =
Cl, Br, I) and ytterbium triflate [Yb(OTf)3] cannot initiate
the reaction with the catalyst loading of 20 mol % (entries
1-4), indicating that the Lewis acidity of the lanthanide
compounds was not decisive in catalyzing this reaction. In
strong contrast, homoleptic lanthanum amide La[N(SiMe3)2]3
catalyzed the reaction with high efficiency. The product was
obtained in 63% yield with 0.5 mol % La[N(SiMe3)2]3 at 25 °C
for 5 min (entry 5). However, no desired product was observed
when the catalyst loading was decreased to 0.1 mol % (entry 6).
To our delight, the tetracoordinate lanthanum amide
[(Me3Si)2N]3La( μ-Cl)Li(THF)3 exhibited the catalytic activ-
ity that was still superior to that of tricoordinate lanthanum
amide La[N(SiMe3)2]3. The utility of 0.5 mol % of [(Me3Si)2-
N]3La( μ-Cl)Li(THF)3 gave the product in an excellent 96%
yield within 5 min (entry 7). Optimization studies revealed that
decreasing the catalyst loading to 0.1 mol % kept the yield at
92% (entry 8). Further decreased catalyst loading of 0.05 mol
% led to a dramatically lowered yield of 43% (entry 9).
Because [(Me3Si)2N]3La( μ-Cl)Li(THF)3 can be regarded as
a solvated adduct of La[N(SiMe3)2]3 and LiCl, anhydrous LiCl
was tried alone to verify whether it can act as a catalyst inde-
pendently. No product was detected after 48 h (entry 10).
Besides, the use of the mixture of La[N(SiMe3)2]3 and
(19) (a) Schuetz, S. A.; Day, V. W.; Sommer, R. D.; Rheingold, A. L.;
Belot, J. A. Inorg. Chem. 2001, 40, 5292. (b) Bradley, D. C.; Ghotra, J. S.;
Hart, F. A. J. Chem. Soc., Dalton Trans. 1973, 1021. (c) Alyea, E. C.; Bradley,
D. C.; Copperthwaite, R. G. J. Chem. Soc., Dalton Trans. 1972, 1580. (d)
Andersen, R. A.; Templeton, D. H.; Zalkin, A. Inorg. Chem. 1978, 17, 2317.
(e) Brady, E. D.; Clark, D. L.; Gordon, J. C.; Hay, P. J.; Keogh, D. W.; Poli,
R.; Scott, B. L.; Watkin, J. G. Inorg. Chem. 2003, 42, 6682.
(20) (a) Berberich, H.; Roesky, P. W. Angew. Chem., Int. Ed. 1998, 37,
€
1569. (b) Burgstein, M. R.; Berberich, H.; Roesky, P. W. Chem.;Eur. J.
2001, 7, 3078. (c) Chen, Y.; Zhu, Z.; Zhang, J.; Shen, J.; Zhou, X. J.
Organomet. Chem. 2005, 690, 3783.
(21) Seo, S.; Marks, T. J. Org. Lett. 2008, 10, 317.
(22) Shen, Q.; Huang, W.; Wang, J.; Zhou, X. Organometallics 2008, 27,
301.
(23) (a) Komeyama, K.; Sasayama, D.; Kawabata, T.; Takehira, K.;
Takaki, K. Chem. Commun. 2005, 634. (b) Komeyama, K.; Sasayama, D.;
Kawabata, T.; Takehira, K.; Takaki, K. J. Org. Chem. 2005, 70, 10679.
(24) (a) Komeyama, K.; Kawabata, T.; Takehira, K.; Takaki, K. J. Org.
Chem. 2005, 70, 7260. (b) Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.;
Miyamoto, T. J. Am. Chem. Soc. 2003, 125, 1184. (c) Komeyama, K.;
Takehira, K.; Takaki, K. Synthesis 2004, 1062.
(25) Horino, Y.; Livinghouse, T. Organometallics 2004, 23, 12.
(26) Horino, Y.; Livinghouse, T.; Stan, M. Synlett 2004, 2639.
(27) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (b) Kim,
Y. K.; Livinghouse, T.; Bercaw, J. E. Tetrahedron Lett. 2001, 42, 2933. (c)
Kim, Y. K.; Livinghouse, T.; Horino, Y. J. Am. Chem. Soc. 2003, 125, 9560.
(d) Kim, Y. K.; Livinghouse, T. Angew. Chem., Int. Ed. 2002, 41, 3645.
(28) Kawaoka, A. M.; Douglass, M. R.; Marks, T. J. Organometallics
2003, 22, 4630.
(29) (a) Yu, X.; Seo, S.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 7244.
(b) Seo, S.; Yu, X.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 263.
(30) (a) Westerhausen, M.; Hartmann, M.; Pfitzner, A.; Schwarz, W. Z.
Anorg. Allg. Chem. 1995, 621, 837. (b) Edelmann, F. T.; Steiner, A.; Stalke,
D. Polyhedron 1994, 13, 539. (c) Zhou, S.; Wang, S.; Yang, G.; Liu, X.;
Sheng, E.; Zhang, K.; Cheng, L.; Huang, Z. Polyhedron 2003, 22, 1019. (d)
Xie, M.; Liu, X.; Wang, S.; Liu, L.; Wu, Y.; Yang, G.; Zhou, S.; Sheng, E.;
Huang, Z. Chin. J. Chem. 2004, 22, 678. (e) Sheng, E.; Wang, S.; Yang, G.;
Zhou, S.; Cheng, L.; Zhang, K.; Huang, Z. Organometallics 2003, 22, 684.
(31) Zhang, L.; Wang, S.; Sheng, E.; Zhou, S. Green Chem. 2005, 7, 683.
(32) Zhang, L.; Wu, H.; Su, S.; Wang, S. Chin. J. Chem. 2009, 27, 2061.
(33) Li, Q.; Wang, S.; Zhou, S.; Yang, G.; Zhu, X.; Liu, Y. J. Org. Chem.
2007, 72, 6763.
(34) (a) Xu, F.; Luo, Y.; Deng, M.; Shen, Q. Eur. J. Org. Chem. 2003,
4728. (b) Zhou, Z.; Xu, F.; Han, X.; Zhou, J.; Shen, Q. Eur. J. Org. Chem.
2007, 5265. (c) Han, X.; Xu, F.; Luo, Y.; Shen, Q. Eur. J. Org. Chem. 2005,
1500. (d) Zhang, H.; Zhou, Z.; Yao, Z.; Xu, F.; Shen, Q. Tetrahedron Lett.
2009, 50, 1622.
J. Org. Chem. Vol. 75, No. 21, 2010 7499