5492
I. K. Mangion, M. Weisel / Tetrahedron Letters 51 (2010) 5490–5492
García-Cuadrado, D.; Pérez-Galán, P.; Raducan, M.; Bour, C.; Echavarren, A. M.;
In conclusion, we have found that a simple gold catalyst can
Espinet, P. Organometallics 2010, 29, 951.
mediate X–H insertion chemistry of sulfoxonium ylides. Sulfoxoni-
um ylides merit attention as safe alternatives to traditional diazo
compounds for the development and application of metal carbene
chemistry. Their bench and thermal stability make them particu-
larly attractive for large scale chemical processing. Moreover, we
have demonstrated a surprising preference of these ylides to en-
gage with late transition metals that are arguably underdeveloped
in carbene catalysis. Continued exploration of sulfoxonium ylides
may reveal further discoveries of novel reactivity.
7. Mangion, I. K.; Nwamba, I. K.; Shevlin, M.; Huffman, M. A. Org. Lett. 2009, 11,
3566.
8. For preparation of 1 see: Dost, F.; Gosselck, J. Tetrahedron Lett. 1970, 58, 5091.
9. For applications of Pt in carbene transformations see: (a) Bertani, R.; Michelin,
R. A.; Mozzon, M.; Traldi, P.; Seraglia, R.; da Silva, M.; Pombeiro, A. J. L.
Organometallics 1995, 14, 551; (b) Cave, G. W. V.; Hallett, A. J.; Errington, W.;
Rourke, J. P. Angew. Chem., Int. Ed. 1998, 37, 3270; (c) Martín-Matute, B.;
Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757;
(d) Ishida, K.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2010, 132, 8842.
10. Typical procedure for catalytic X–H insertions: To a mixture of 300 mg of 1
(1.33 mmol), and 3.90 mg of AuCl(SMe2) (0.013 mmol, 0.01 equiv) under a
nitrogen atmosphere was added 6.6 mL of degassed CH2Cl2 (sparged 30 min
with nitrogen). To the resulting suspension was added 285 mg 2-
aminonaphthalene (1.99 mmol, 1.5 equiv). The resulting solution was stirred
for 4 h, at this time TLC analysis indicated completion, so the reaction was
concentrated and the resulting residue purified via silica gel column
chromatography (9:1 hexanes/EtOAc), affording 355 mg (92% yield) of 2i as a
white solid. 1H NMR (CDCl3, 400 MHz) d 7.70 (t, J = 5.2 Hz, 2H), 7.61 (m, 3H);
7.38 (m, 4H); 7.23 (m, 1H), 7.01 (dd, J = 8.8, 2.3 Hz), 6.72 (s, 1H), 5.28 (d,
J = 6 Hz, 1H), 5.20 (d, J = 6 Hz, 1H), 3.81 (s, 3H); 13C NMR (CDCl3, 100 MHz) d
172.32, 143.6, 137.4, 134.9, 129.1, 128.4, 127.8, 127.6, 127.3, 126.3, 126.1,
122.4, 118.0, 105.8, 60.8, 52.9.
Acknowledgments
The authors would like to thank Dr. Mark Huffman (Merck) for
helpful discussions.
References and notes
1. (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic
Synthesis with Diazo Compounds; Wiley-Interscience: New York, 1998; (b)
Regitz, M.; Maas, G. Diazo Compounds, Properties and Synthesis; Academic Press:
London, 1987.
2. (a) Pfaltz, A. Modern Synth. Methods 1989, 5, 199; (b) Diaz-Requejo, M. M.;
Pérez, P. J. J. Organomet. Chem. 2005, 690, 5441.
3. (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911; (b) Davies, H. M. L.;
Beckwith, R. E. Chem. Rev. 2003, 103, 2861; (c)Evans, P. A., Ed.Modern Rhodium-
Catalyzed Organic Reactions; Wiley-VCH: Weinheim, Germany, 2005.
4. (a) Nishiyana, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh, K. J. Am. Chem. Soc.
1994, 116, 2223; (b) Del Zotto, A.; Baratta, W.; Rigo, P. J. Chem. Soc., Perkin Trans.
1 1999, 3079; (c) Deng, Q.-H.; Xu, H.-W.; Yuen, A. W.-H.; Xu, Z.-J.; Che, C.-M.
Org. Lett. 2008, 10, 1529.
5. (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180; (b) Gorin, D. J.; Sherry, B. D.;
Toste, F. D. Chem. Rev. 2008, 108, 3351; (c) Jimenéz-Núñez, E.; Echavarren, A. M.
Chem. Rev. 2008, 108, 3351; (d) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed.
2008, 46, 3410.
11. Thiols were found to inactivate the gold catalyst and are unsuitable as
substrates.
12. Wang, D.; Schwinden, M. D.; Radesca, L.; Patel, B.; Kronenthal, D.; Huang, M.-
H.; Nugent, W. A. J. Org. Chem. 2004, 69, 1629.
13. Determined by chiral HPLC analysis.
14. Clark, S. J. Nitrogen, Oxygen, and Sulfur Ylide Chemistry; Oxford University Press:
New York, 2002.
15. 10% v/v DMSO was sufficient to suppress conversion.
16. Dormer, P. G.; Mangion, I. K. unpublished results; for direct observation of a
gold carbene complex see for example: (a) Wang, H. M. J.; Chen, C. Y. L.; Lin, I. J.
B. Organometallics 1999, 18, 1216; (b) Fedorov, A.; Moret, M.-E.; Chen, P. J. Am.
Chem. Soc. 2008, 130, 8880.
17. For a discussion of bond order in gold(I) carbene complexes, see: Benitez, D.;
Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard, W. A., III; Toste, F. D. Nat.
Chem. 2009, 1, 482.
18. Lewis acid derivatives of Zn, Mg, Sc, La and Yb were found not to provide
conversion in the reaction of 1 with aniline.
19. For a detailed mechanistic discussion of polar X–H bond insertions of metal
carbenes see Ref. 1a, Chapter 8 and: Davis, F. A.; Yang, B.; Deng, J. J. Org. Chem.
2003, 68, 5147.
6. (a) Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.;
Diaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284; (b)
Marion, N.; Nolan, S. P. Chem. Soc. Rev. 2008, 37, 1776; (c) Ye, L.; Cui, L.; Zhang,
G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258; (d) Bartolomé, C.; Ramiro, Z.;