Kivrak and Larock
JOCArticle
mechanism of these reactions appears to involve nucleophilic
attack on the oxaziridine nitrogen with N-O or C-N bond
cleavage.
TABLE 2. Optimization of the Reaction of Oxaziridine 2a and Benzyne
Precursor 1a
Highly reactive arynes have been extensively used for the
preparation of a wide range of aromatic heterocycles.14-16
Many biologically important heterocycles have been ob-
tained from arynes by Pd-catalyzed annulation reactions,17
electrophilic and nucleophilic reactions,18 inter- or intramo-
lecular cycloaddition reactions,19 and insertion reactions.20
In our previous studies, we have reported the synthesis of
benzotriazoles,21 indazoles,22 and benzisoxazoles23 by the
[3 þ 2] cycloaddition reaction of azides, diazo compounds,
and nitrile oxides with arynes, respectively. We now wish to
report the synthesis of dihydrobenzisoxazoles by the [3 þ 2]
cycloaddition of arynes and oxaziridines.
entry CsF (equiv) base (equiv) solvent temp (°C) % 3aa % 2a
1
2
3
4
3
3
3
3
3
3
3
3
3
3
3
3
4.5
6
4.5
3
4.5
3
3
4.5
CH3CN
CH3CN
DME
rt
65
90
110
110
90
90
90
90
90
90
65
90
90
90
65
65
90
90
90
>98
66
tr
59
13
toluene
DMF
Na2CO3 (1.1) DME
Cs2CO3 (1.1) DME
NaHCO3 (1.1) DME
5
6a
77
36
42
45
55
66
15
64
46
29
12
5
7b
8
Results and Discussion
8
9b
K2CO3 (1.1)
Li2CO3 (1.1) DME
NaCl (1.1) DME
DME
7
25
First, a number of oxaziridines have been prepared from
the corresponding aldehydes and amines, followed by oxida-
tion. A simple method for the preparation of oxaziridines
involves the oxidation of imines by m-chloroperoxybenzoic
10b
11
12b
13c
14
15
16
17b
18d
19 e
20e
Na2CO3 (1.1) DME
DME
DME
Na2CO3 (1.1) DME
Na2CO3 (1.1) THF
THF
Na2CO3 (1.1) DME
Na2CO3 (1.1) DME
DME
85
88
5
63
(14) (a) Wittig, G.; Pohmer, L. Angew. Chem. 1955, 67, 348. (b) Wittig,
G.; Hoffmann, R. W. Chem. Ber. 1962, 95, 2718. (c) Kornfeld, E. C.; Barney,
P.; Blankley, J.; Faul, W. J. Med. Chem. 1965, 8, 342.
(15) For some examples of the synthesis of heterocycles from arynes, see:
(a) Nair, V.; Kim, K. H. J. Org. Chem. 1975, 40, 3784. (b) Yoshida, H.;
Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2002, 41, 3247.
(c) Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198. (d) Beltran-Rodil, S.;
36
61
48
aMethod A: the reaction was carried out on 1a (0.3 mmol), 1.2 equiv
of 2a, 1.1 equiv of Na2CO3, and 3 equiv of CsF in DME (7 mL) at 90 °C
for 24 h. bYields were determined by proton NMR spectral analysis.
cMethod B: the reaction was carried out on 1a (0.3 mmol), 1.2 equiv of
2a, and 4.5 equiv of CsF in DME (7 mL) at 90 °C for 24 h. dThe yield was
calculated from the crude product and the reaction time was 12 h.
e1.5 equiv of o-(trimethylsilyl)phenyl triflate (1a) was used for these
cyclization reactions.
~
ꢀ
Pena, D.; Guitian, E. Synlett 2007, 1308. (e) Zhao, J.; Larock, R. C. Org.
Lett. 2005, 7, 4273. (f) Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583. (g)
Rogness, D. C.; Larock, R. C. Tetrahedron Lett. 2009, 50, 4003. (h) Zhang,
X.; Larock, R. C. Org. Lett. 2005, 7, 3973.
(16) For recent reviews of arynes, see: (a) Wenk, H. H.; Winkler, M.;
Sander, W. Angew. Chem., Int. Ed. 2003, 42, 502. (b) Pellissier, H.; Santelli,
M. Tetrahedron 2003, 59, 701.
(17) (a) Liu, Z.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127,
15716. (b) Zhang, X.; Larock, R. C. Org. Lett. 2005, 7, 3973. (c) Liu, Z.;
Larock, R. C. Org. Lett. 2004, 6, 3739. (d) Liu, Z.; Larock, R. C. Tetrahedron
2007, 63, 347. (e) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am.
Chem. Soc. 2006, 128, 7426. (f) Jayanth, T. T.; Cheng, C.-H. Chem. Commun.
acid (m-CPBA).2,24 Using this approach, a variety of aro-
matic, aliphatic, heterocyclic, and polycyclic oxaziridines
have been synthesized as mixtures of diastereoisomers
(Table 1).25 We have focused our efforts on the synthesis of
only more thermally stable oxaziridines. For instance, more
stable N-tert-butyl oxaziridines26 are readily prepared from
tert-butyl amine and aromatic aldehydes, followed by oxida-
tion.
Optimization of the Cycloaddition. The reaction of
o-(trimethylsilyl)phenyl triflate (1a) with 2-tert-butyl-3-
phenyl-1,2-oxaziridine (2a) and CsF was optimized (Table 2).
Benzyne precursor 1a was allowed to react with 2a and
3 equiv of CsF for 24 h at room temperature, but the starting
oxaziridine 2a was recovered (entry 1). A trace amount of the
desired product 3aa was formed when the temperature was
increased to 65 °C in acetonitrile (entry 2). Thus, elevated
temperatures were used for all subsequent cycloaddition reac-
tions of 1a and 2a. The desired product was obtained in 59%
yield by using dimethoxyethane (DME) as the solvent at 90 °C
(entry 3). Not only a much lower yield but also decomposition
of the starting compounds were observed when the reaction
was run in toluene or dimethylformamide (DMF) at 120 °C for
24 h (entries 4 and 5). A yield of 77% of 3aa was observed when
o-(trimethylsilyl)phenyl triflate (1a) was allowed to react with
~
2006, 894. (g) Pena, D.; Perez, D.; Guitian, E.; Castedo, L. Org. Lett. 1999, 1,
1555. (h) Radhakrishnan, K. V.; Yoshikawa, E.; Yamamoto, Y. Tetrahedron
ꢀ
ꢀ
~
Lett. 1999, 40, 7533. (i) Pena, D.; Perez, D.; Guitian, E.; Castedo, L. J. Am.
Chem. Soc. 1999, 121, 5827.
ꢀ
ꢀ
(18) (a) Yoshida, H.; Honda, Y.; Shirakawa, E.; Hiyama, T. Chem.
Commun. 2001, 1880. (b) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama,
T. Angew. Chem., Int. Ed. 2002, 41, 3247. (c) Liu, Z.; Larock, R. C. Org. Lett.
2003, 5, 4673. (d) Liu, Z.; Larock, R. C. Org. Lett. 2004, 6, 99. (e)
Jeganmohan, M.; Cheng, C.-H. Synthesis 2005, 1693. (f) Bhuvaneswari, S.;
Jeganmohan, M.; Yang, M. C.; Cheng, C. H. Chem. Commun. 2008, 2158.
(19) (a) Raminelli, C.; Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 4689.
(b) Feltenberger, J. B.; Hayashi, R.; Tang, Y.; Babiash, E. S. C.; Hsung, R. P.
Org. Lett. 2009, 11, 3430. (c) Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc.
2008, 130, 17270. (d) Gilmore, C. D.; Allan, K. M.; Stoltz, B. M. J. Am.
ꢀ
ꢀ
Chem. Soc. 2008, 130, 1558. (e) Perez, D.; Guitian, E.; Castedo, L. J. Org.
Chem. 1992, 57, 5911. (f) Matsumoto, T.; Hosoya, T.; Suzuki, K. J. Am.
Chem. Soc. 1992, 114, 3568. (g) Hosoya, T.; Takashiro, E.; Matsumoto, T.;
Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004. (h) Hussain, H.; Kianmehr, E.;
Durst, T. Tetrahedron Lett. 2001, 42, 2245. (I) Soorukram, D.; Qu, T.;
Barrett, A. G. M. Org. Lett. 2008, 10, 3833.
(20) (a) Liu, Z.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 13112.
(b) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340.
(21) Shi, F.; Waldo, J. P.; Chen, Y.; Larock, R. C. Org. Lett. 2008, 10,
2409.
(22) Liu, Z.; Shi, F.; Martinez, P. D. G.; Raminelli, C.; Larock, R. C.
J. Org. Chem. 2008, 73, 219.
(23) Dubrovskiy, A. V.; Larock, R. C. Org. Lett. 2010, 12, 1180.
(24) (a) Widmer, J.; Keller-Schierlein, W. Helv. Chim. Acta 1974, 57, 657.
(b) Taguchi, K.; Westheimer, F. H. J. Org. Chem. 1971, 36, 1570.
(25) (a) Troisi, L.; Lorenzis, S. D.; Fabio, M.; Rosato, F.; Granito, C.
Tetrahedron: Asymmetry 2008, 19, 2246. (b) Davis, F. A.; Chen, B. C. Chem.
Rev. 1992, 92, 919. (c) Armstrong, A.; Draffan, A. G. Tetrahedron Lett. 1999,
40, 4453. (c) Mohajer, D.; Iranpoor, N.; Rezaeifard, A. Tetrahedron Lett.
2004, 45, 631.
(26) (a) Emmons, W. D. J. Am. Chem. Soc. 1957, 79, 5739. (b) Pews, R. G.
J. Org. Chem. 1966, 32, 1628.
J. Org. Chem. Vol. 75, No. 21, 2010 7383