8100
Q. Zhang et al. / Tetrahedron 66 (2010) 8095e8100
chromatography (petroleum ether/EtOAc 15:1 to 5:1 gradient) to
Supplementary data
give the product 3ba.
Supplementary data (copies of NMR spectra) associated with
this article can be found, in the online version, at doi:10.1016/
4.3. Typical procedure for PPh3-catalyzed synthesis of 5bc
Oxo-diene 4c (0.5 mmol), PPh3 (26.2 mg, 20 mmol %) were
added to toluene (10 mL) in one-neck bottle. The mixture was
stirred at room temperature under nitrogen atmosphere. To this
reaction mixture the solution of terminal alkynes 2b (0.6 mmol) in
toluene (10 mL) was slowly added within 1.5 h. The reaction was
monitored by TLC. When the reaction was finished, the mixture was
directly subjected to silica gel column chromatography (petroleum
ether/EtOAc 30:1 to 10:1 gradient) to give the product 5bc.
References and notes
1. For reviews see: (a) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Ma-
chado, P. Chem. Rev. 2009, 109, 4140; (b) Martins, M. A. P.; Frizzo, C. P.; Moreira, D.
N.; Zanatta, N.; Bonacorso, H. G. Chem. Rev. 2008, 108, 2015; (c) Druzhinin, S. V.;
Balenkova, E. S.; Nenajdenko, V. G. Tetrahedron 2007, 63, 7753; (d) Martins, M. A.
P.; Cunico, W.; Pereira, C. M. P.; Flores, A. F. C.; Bonacorso, H. G.; Zanatta, N. Curr.
Org. Synth. 2004, 1, 39.
2. For reviews see: (a) Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J. A.,
Eds.; Elsevier: Oxford, 2008; Vol. 20; (b) Lavilla, R. J. Chem. Soc., Faraday Trans.
2002, 1141; (c) Simon, C.; Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004,
4957.
3. For reviews see: (a) Faulkner, D. J. Nat. Prod. Rep. 2000,17, 7; (b) Larrosa, I.; Romea,
P.; Urpi, F. Tetrahedron 2008, 64, 2683; (c) Clarke, P. A.; Santos, S. Eur. J. Org. Chem.
2006, 2045; (d) Nakata, T. Chem. Rev. 2005, 105, 4314; (e) Wong, H. N. C.; Yu, P.;
Yick, C. Y. Pure Appl. Chem. 1999, 71, 1041; (f) Kuthan, J.; Sebek, P.; Boehm, S. Adv.
Heterocycl. Chem. 1995, 62, 19.
4. Liu, H.; Zhang, Q.; Wang, L.; Tong, X. Chem. Commun. 2010, 312.
5. Zhang, Q.; Yang, L.; Tong, X. J. Am. Chem. Soc. 2010, 132, 2550.
6. For reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535; (b)
Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035; (c) Lu, X.; Du, Y.; Lu,
C. Pure Appl. Chem. 2005, 77, 1985; (d) Nair, V.; Menon, S. R.; Sreekanth, A. R.;
Abhilash, N.; Biji, A. T. Acc. Chem. Res. 2006, 39, 520; (e) Ye, L.; Zhou, J.; Tang, Y.
Chem. Soc. Rev. 2008, 37, 1140; (f) Kwong, C. K.; Fu, M. Y.; Lam, C. S.; Toy, P. H.
Synthesis 2008, 2307.
4.4. Typical procedure for synthesis of 8bc
2H-Pyran 5bc (0.2 mmol), ammonium acetate (30.8 mg,
0.4 mmol), and acetic acid (3 mL) was added into one-necked
bottle. The reaction mixture was heated and reflux for 24 h. The
mixture then was cooled down to room temperature. Water
(30 mL) and CH2Cl2 (30 mL) were added. The organic layer was
separated and dried over Na2SO4. The solvent was removed under
vacuum to obtain a liquid, which was purified via FCG to give
product 8bc.
Spectral data of compounds 3aa, 5bc, and 8bc are listed below.
Other spectral data and copies of the 1H and 13C NMR spectra of all
7. For reviews see: (a) Weinreb, S. M.; Scola, P. M. Chem. Rev. 1989, 89, 1525; (b)
Reymond, S.; Cossy, J. Chem. Rev. 2008, 108, 5359; (c) Behforouz, M.; Ahmadian,
M. Tetrahedron 2000, 56, 5259; (d) Takao, K.-I.; Munakata, R.; Tadano, K.-I.
Chem. Rev. 2005, 105, 4779.
8. Liu, H.; Zhang, Q.; Wang, L.; Tong, X. Chem.dEur. J. 2010, 16, 1968.
9. CCDC 739301 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic
10. For representative examples of phospine-catalyzed [4þ2] cycloadditions, see:
(a) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716; (b) Wurz, R. P.;
Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234; (c) Tran, Y. S.; Kwon, O. J. Am. Chem.
Soc. 2007, 129, 12632.
11. For reviews, see: (a) Bruggink, A.; Schoevaart, R.; Kieboom, T. Org. Process Res.
Dev. 2003, 7, 622; (b) Ajamian, A.; Gleason, J. L. Angew. Chem., Int. Ed. 2004, 43,
3754; (c) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005,
105, 1001; (d) Pellissier, H. Tetrahedron 2006, 62, 1619; (e) MacMillan, D. W. C.;
Walji, A. M. Synlett 2007, 1477; (f) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1.
12. This result convincingly rules out the other mechanistic consideration, con-
sisting DielseAlder reaction of oxo-diene with alkyne and [1,3]-proton transfer.
13. (a) Larpent, C.; Meignan, G.; Patin, H. Tetrahedron Lett. 1991, 32, 2615; (b) Lu, C.;
Lu, X. Org. Lett. 2002, 4, 4677; (c) Trost, B. M.; Li, C. J. J. Am. Chem. Soc. 1994, 116,
3167; (d) Trost, B. M.; Li, C. J. J. Am. Chem. Soc. 1994, 116, 10819; (e) Trost, B. M.;
Dake, G. R. J. Org. Chem. 1997, 62, 5670; (f) Dake, G. R.; Trost, B. M. J. Am. Chem.
Soc. 1997, 119, 7595; (g) Dureen, M. A.; Stephan, D. W. J. Am. Chem. Soc. 2009,
131, 8396.
14. Guo, H.; Xu, Q.; Kwon, O. J. Am. Chem. Soc. 2009, 131, 6318.
15. (a) Reinhoudt, D. N.; Dijkstra, P. J. Pure Appl. Chem. 1988, 60, 477; (b) Shibuya, J.;
Nabeshima, M.; Nagano, H.; Maeda, K. J. Chem. Soc., Perkin Trans. 2 1988, 1607;
(c) Dijkstra, P. J.; Hertog, H. J.; Eerden, J.; Harkema, S.; Reinhoudt, D. N. J. Org.
Chem. 1988, 53, 375.
16. (a) Katritzky, A. R.; Denisenko, A.; Arend, M. J. Org. Chem. 1999, 64, 6076; (b)
Palacios, F.; Alonso, C.; Rubiales, G. J. Org. Chem. 1997, 62, 1146; (c) Reich, S. H.;
Melnick, M.; Pino, M. J.; Fuhry, M. A. N.; Trippe, A. J.; Appelt, K.; Davies, J. F., II;
Wu, B. W.; Musick, L. J. Med. Chem. 1996, 39, 2781; (d) Katsuyama, I.; Ogawa, S.;
Yamaguchi, Y.; Funabiki, K.; Matsui, M.; Muramatsu, H.; Shibata, K. Synthesis
1997, 1321.
4.4.1. Compound 3ba. 1H NMR (400 MHz, CDCl3):
10H), 7.31 (d, J¼7.2 Hz, 2H), 7.19 (d, J¼8.0 Hz, 2H), 6.89 (s, 1H), 4.91
(s, 2H), 3.45 (s, 3H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3):
192.5,
167.1, 150.7, 144.6, 137.3, 135.3, 135.2, 131.9, 130.7, 130.0, 129.7, 128.7,
128.3, 127.9, 127.0, 126.7, 120.3, 51.8, 45.6, 21.5; MS (EI-m/z): 473
(Mþ); HRMS calcd for C27H23NO5S 473.1297. Found 473.1296.
d 7.53e7.38 (m,
d
4.4.2. Compound 5bc. Yellow solid, mp: 102e103 ꢀC. 1H NMR
(400 MHz, CDCl3):
7.56e7.53 (m, 4H), 7.31e7.23 (m, 3H), 7.17e7.14 (m, 5H), 5.24 (s,
2H); 13C NMR (100 MHz, CDCl3):
194.9, 170.4, 141.1, 137.1, 134.2,
d 8.10e8.08 (m, 2H), 7.63e7.60 (m, 1H),
d
133.0, 132.5, 130.7, 129.9, 129.8, 129.5, 129.1, 128.8, 128.2, 128.0,
119.3, 117.6, 90.8, 69.3. MS (m/z): 363 (Mþ); HRMS calcd for
C25H17NO2 363.1259. Found 363.1260.
4.4.3. Compound 8bc. 1H NMR (400 MHz, CDCl3):
8.03e8.00 (m, 2H), 7.64e7.56 (m, 5H), 7.48e7.47(m, 1H), 7.36e7.30
(m, 7H); 13C NMR (100 MHz, CDCl3):
194.4, 163.4, 153.6, 150.9,
d 8.92 (s, 1H),
d
137.0, 136.3, 134.0, 133.8, 133.3, 130.7, 129.9, 129.7, 129.3, 129.1,
128.7, 128.6, 128.5, 116.4, 107.9. MS (m/z):360 (Mþ); HRMS calcd for
C25H16N2O 360.1263. Found 360.1261.
Acknowledgements
This work is supported by the Fundamental Research Funds for
the Central Universities. Special gratitude also goes to Prof. Xingyi
Wang and Ms. Shuzhen Jiang for their support.