620 Letters in Organic Chemistry, 2012, Vol. 9, No. 9
Kataoka et al.
[12]
[13]
Terao, Y.; Tsuji, K.; Murata, M.; Achiwa, K.; Nishio, T.; Wata-
nabe, N.; Seto, K. Facile process for enzymatic resolution of race-
mic alcohols. Chem. Pharm. Bull., 1989, 37, 1653-1655.
Gutman, A.L.; Brenner, D.; Boltanski, A. Convenient practical
resolution of racemic alkyl-aryl alcohols via enzymatic acylation
with succinic anhydride in organic solvents. Tetrahedron: Asymme-
try, 1993, 4, 839-844.
conditions: column, CP-Cyclodextrin-B-236-M19 (Chrom-
pack), 0.25 mm x 50 m; injection, 180 °C; detection, 180 °C;
oven, 160 °C; carrier gas, He; head pressure, 2.4 kg/cm2;
retention time, 41.9 (R) and 42.9 (S) min.
1-(1-naphthyl)ethanol (13)
[14]
[15]
[16]
[17]
[18]
[19]
Patel, R.; Banerjee, A.; Nanduri, V.; Goswami, A.; Comezoglu, F.
T. Enzymatic resolution of racemic secondary alcohols by lipase B
from Candida antarctica. J. Amer. Oil Chem. Soc., 2000, 77, 1015-
1019.
Bouzemi, N.; Debbeche, H.; Aribi-Zouioueche, L.; Fiaud, J. –C.
On the use of succinic anhydride as acylating agent for practical
resolution of aryl-alkyl alcohols through lipase-catalyzed acylation.
Tetrahedron Lett., 2004, 45, 627-630.
Rasalkar, M.S.; Potdar, M.K.; Salunlhe, M.M. Pseudomonas ca-
pacia lipase-catalyzed resolution of racemic alcohols in ionic liquid
using succinic anhydride: role of triethylamine in enhancement of
catalytic activity. J. Mol. Catl. B: Enzymatic, 2004, 27, 267-270.
Miyazawa, T.; Kaito, E.; Yukawa, T.; Murashima, T.; Yamada, T.
Enzymatic resolution of 2-aryloxy-1-propanols via lipase-catalyzed
enantioselective acylation using anhydride as acyl donors. J. Mol.
Catl. B: Enzymatic, 2005, 37, 63-67.
Zada, A.; Dunkelblum, E. A convenient resolution of racemic
lavandulol through lipase-catalyzed acylation with succinic anhy-
dride: simple preparation of enantiomerically pure (R)-lavandulol.
Tetrahedron Asymmetry, 2006, 17, 230-233.
Wang, Y.; Wang, R.; Li, Q.; Zhang, Z.; Feng, Y. Kinetic resolution
of rac-alkyl alcohols via lipase-catalyzed enantioselective acylation
using succinic anhydride as acylating agent. J. Mol. Catl. B: Enzy-
matic, 2009, 56, 142-145.
Maywald, M.; Pfalts, A. Chromatography-free enzymatic kinetic
resolution of secondary alcohols. Synthesis, 2009, 3654-3660.
Lourenco, N.M. T.; Monteiro, C.M.; Afonso, C. A. M. Ionic acy-
lating agents for the enzymatic resolution of sec-alcohols in ionic
liquids. Euro. J. Org. Chem., 2010, 6938-6943.
Debbeche, H.; Toffano, M.; Fiaud, J.–C.; Arbi-Zouioueche, L.
Multi-substrate screening for lipase-catalyzed resolution of arylal-
kylethanols with succinic anhydride as acylating agent. J. Mol. Cat.
B: Enzymatic, 2010, 66, 319-324.
Okudomi, M.; Ageishi, K.; Yamada, T.; Chihara, N.; Nakagawa,
T.; Mizuochi, K.; Matsumoto, K. Enzyme-mediated enantioselec-
tive hydrolysis of soluble polymer-supported carboxylates. Tetra-
hedron, 2010, 66, 8060-8067.
Raimondi, S.; Monti, D.; Forti, L.; Riva, S. Kinetic resolutions of
racemic amines and alcohols catalyzed by an industrial glutaryl-7-
aminocephalosporanic acid acylase with unexpected broad sub-
strate specificity. Tetrahedron Asymmetry, 2003, 14, 1091-1094.
Adani, S.; Raimondi, S.; Forti, L.; Monti, D.; Riva, S. Enantiose-
lective esterase activity of an industrial glutaryl acylase. Tetrahe-
dron Asymmetry, 2005, 16, 2509-2513.
Chen, C.–S.; Fujimoto, Y.; Grdaukas, G.; Sih, C. J. Quantitative
analyses of biochemical kinetic resolutions of enantiomers. J. Am.
Chem. Soc., 1982, 104, 7294-7299.
Stella, V.J.; Borchardt, R.T.; Hageman, M.J.; Oliyai, R.; Maag, H.
Tilley, J.W. Prodrugs: Challenges and Rewards (Biotechnology:
Pharmaceutical Aspects). Springer: New York, 2007.
Sobrado, P.; Fitzpatrick, P.F. Identification of Tyr413 as an Active
Site Residue in the Flavoprotein Tryptophan 2-monooxygenase and
analysis of its contribution to catalysis. Biochemistry 2003, 42,
13833-13838.
Okada, T.; Suzuki, H.; Wada, K.; Kumagai, H.; Fukuyama, K.
Crystal structures of g-glutamyltranspeptidase from E. coli, a key
enzyme in glutathione metabolism, and its intermediate. Proc. Natl.
Acad. Sci. USA, 2006, 103, 6471-6476.
Yamazawa, R.; Nakajima, Y.; Mushiake, K.; Yoshimoto, T.; Ito,
K. Crystal structure of serine dehydrogenase from Escherichia coli:
Important role of the C-terminal region for closed-complex forma-
tion. J. Biochem., 2011, 149, 701-712.
Laumen, K.; Schneider, M.P. A highly selective ester hydrolase
from Pseudomonas sp. for the enzymatic preparation of enanti-
omerically pure secondary alcohols; chiral auxiliaries in organic
synthesis. J. Chem. Soc., Chem. Commun., 1988, 598-600.
Nakamura, K.; Fujii, M.; Ida, Y. Stereoinversion of arylethanols by
Geotrichum candidum. Tetrahedron: Asymmetry, 2001, 12, 3147-
3153.
Mp 62.0-62.3 °C (recrystallized from CH2Cl2-hexane);
27
lit. 64 °C [36]. [ꢀ]D = +55.9 (c 0.64, MeOH) (88% ee, (R)-
25
form); lit. [ꢀ]D = +45.0 (c 2.00, MeOH) ((R)-form)[37].
GC conditions: column, CP-Cyclodextrin-B-236-M19
(Chrompack), 0.25 mm x 50 m; injection, 180 °C; detection,
180 °C; oven, 160 °C; carrier gas, He; head pressure, 2.4
kg/cm2; retention time, 43.0 (R) and 44.3 (S) min.
4-benzyloxy-2-butanol (14)
29
[ꢀ]D = –14.9 (c 1.08, MeOH) (99% ee, (R)-form); lit.
[ꢀ]D27 = +19.0 (c 0.95, MeOH) ((S)-form)[38]. HPLC condi-
tions: column, CHIRALCEL OD-H (Daicel Chemical Indus-
tries, Ltd.); eluent, hexane/2-propanol = 90/10; flow rate, 0.5
mL/min; 254 nm; temperature, 25 °C; retention time, 12.8
(S) and 14.0 (R) min.
CONFLICT OF INTEREST
The author(s) confirm that this article content has no con-
flicts of interest.
[20]
[21]
ACKNOWLEDGEMENTS
We thank Collaborative Research Center of Meisei Uni-
versity for NMR analysis.
[22]
[23]
[24]
SUPPLEMENTARY MATERIAL
Supplementary material (GC and HPLC charts) is avail-
able on the publishers website along with the published arti-
cle.
REFERENCES
[25]
[26]
[27]
[28]
[1]
[2]
[3]
[4]
Bornscheuer, U.T.; Kazlauskas, R.J. Hydrolases in Organic Syn-
thesis, Wiley-VCH: Weinheim, 1999.
Faber, K. Biotransformations in Organic Chemistry: A Textbook,
5th ed.; Springer Verlag: Berlin-Heidelberg-New York, 2004.
Ghanem, A.; Aboul-Enein, H.Y. Application of lipases in kinetic
resolution of racemates. Chirality, 2005, 17, 1-15.
Garcia-Uradiales, E.; Alfonso, I.; Gotor, V. Enantioselective En-
zymatic Desymmetrizations in Organic Synthesis. Chem. Rev.,
2005, 105, 313-354.
[5]
[6]
Bornscheuer, U.T. Trends and Challenge in Enzyme Technology,
Springer: Berlin/Heidelberg, 2005.
Fogassy, E.; Nógrádi, E.; Kozma, D.; Egri, G.; Pálovics, E.; Kiss,
V. Optical resolution methods. Org. Biomol. Chem., 2006, 4, 3011-
3030.
Gadler, P.; Faber, K. New enzymes for biotransformations: micro-
bial alkyl sulfatases displaying stereo- and enantioselectivity.
Trends Biotechnol., 2007, 25, 83-88.
Ghanem, A. Trends in lipase-catalyzed asymmetric access to enan-
tiomerically pure/enriched compounds. Tetrahedron, 2007, 63,
1721-1754.
Gotor, V.; Alfonso, I.; Garcia-Urdiales, E. Asymmetric Organic
Synthesis with Enzymes, Wiley-VCH: Weinheim, 2008.
Whittall, J.; Sutton, P.W. Practical Methods for Biocatalysis and
Biotransformations, Wiley: West Sussex, 2010.
[29]
[30]
[31]
[32]
[7]
[8]
[9]
[10]
[11]
Drauz, K.; Gröger, H.; May, O. Enzyme Catalysis in Organic Syn-
thesis, 3rd ed.; Wiley-VCH: Weinheim, 2012.