2166
H. Maheswaran et al. / Tetrahedron: Asymmetry 21 (2010) 2158–2166
ed.; Cornell University Press: New York. Chapter 3. This property enables its
routine use in organic synthesis as deprotecting agents for silyl groups.
10. To the best of our knowledge until now there is no report for the
enantioselective direct aldol reaction of aromatic aldehydes and
methylvinylketone (MVK) under catalytic conditions. For direct aldol
reaction of aliphatic aldehydes with methylvinylketone (MVK); see: Trost, B.
M.; Shin, S.; Sclafani, J. A. J. Am. Chem. Soc. 2005, 127, 8602.
HPLC data for aldol adducts derived from NiCl2[(ꢀ)-sparteine](2)
catalyst: major enantiomer (R) tr = 18.85 min, minor enantiomer
(S) tr = 17.08 min; 65% ee; ½a D25
¼ þ67:0 (c 1.0, CHCl3).
ꢂ
4.2.3.5. 5-hydroxy-5-(4-chloro-3-nitrophenyl)pent-1-en-3-one
7i. IR (KBr): 3448, 3100, 2909, 1949, 1678, 1611, 1535, 1479,
1403, 1353, 1200, 1050, 975, 900, 834, 799, 754, 709, 688, 537;
1H NMR (500 MHz, CDCl3) d: 2.90–3.01 (m, 2H), 3.71 (br s, 1H),
5.23 (br s, 1H), 5.94 (d, J = 10.73 Hz, 1H), 6.26 (d, J = 17.56 Hz,
1H), 6.36 (dd, J = 10.73, 17.56 Hz, 1H), 7.47–7.55 (m, 2H), 7.87 (s,
1H); 13C NMR (75 MHz, CDCl3) d: 199.8, 148.0, 143.6, 136.2,
131.8, 130.5, 130.3, 125.8, 122.9, 68.2, 47.4; ESI-MS (m/z): 278
(M+Na), 256 (M+H); enantiomeric excess was determined by HPLC
with a Chiralcel AD-H column (93:07) hexane/isopropanol, 0.7 mL/
min, UV detection at 220 nm. HPLC data for aldol adducts derived
from CuCl2[(ꢀ)-sparteine](1) catalyst: major enantiomer (R)
tr = 20.4 min, minor enantiomer (S) tr = 22.52 min; 44% ee;
11. For direct aldol reaction of methylvinylketone (MVK) using catalyst 2, better
yields and enantioselectivities were obtained in methanol. In contrast, for
catalyst 1, the best solvent for the reaction is DMF. It should be noted that
solvent independent enantioreversal with identical sign of the specific rotation
occurs in both the solvents (DMF and MeOH) with catalysts 1 and 2.
12. It is a popular misconception that the (+)-sparteine is not a natural product;
however, although more narrowly distributed than its better known and
commercially available antipode (ꢀ)-sparteine. It is well known that (+)-
sparteine is biosynthesized by numerous plant species. Traditionally, (+)-
sparteine has been most conveniently obtained from natural ( )-lupanine (2-
oxosparteine), extracted from the seeds of Lupinus albus, by classical resolution
followed by reduction of the resulting (ꢀ)-lupanine. For references see (a)
Norcross, N. R.; Melbardis, J. P.; Solera, M. F.; Sephton, M. A.; Kilner, C.;
Zakharov, L. N.; Astles, P. C.; Warriner, S. L.; Blakemore, P. R. J. Org. Chem. 2008,
73, 7939; (b) Orekhov, A. P.; Norkina, S. S.; Maksimova, T. Arch. Pharm. 1935,
273, 369; (c) The cost of (+)-sparteine (as pachycarpine) is ca. three times
greater than that typical for (ꢀ)-sparteine.; More recently, (+)-sparteine itself
has been discovered to be a minor alkaloid of Lupinus albus, see: (d) Wysocka,
W. Sci. Legumes 1995, 2, 137–140; (e) Ebner, T.; Eichelbaum, M.; Fischer, P.;
Meese, C. O. Arch. Pharm. 1989, 322, 399.
13. (a) Lopez, S.; Muravyov, I.; Pulley, S. R.; Keller, S. W. Acta Crystallogr., Sect. C
1998, 54, 355; (b) Kang, S. K.; Choi, S.-N.; Lee, Y.-M. Acta Crystallogr., Sect. C
2004, 60, m174.
14. Degree of distortion from the planarity is reflected by the magnitude of
dihedral angle between the MN2 plane and MCl2 plane, which is 67.0°and
81.3° for 1 and 2, respectively.
15. (a) Klebe, G.; Weber, F. Acta Crystallogr., Sect. B 1994, 50, 50; (b) Murray-Rust,
P.; Bürgi, H. B.; Dunitz, J. D. Acta Crystallogr., Sect. B 1978, 34, 1787; (c) Murray-
Rust, P.; Bürgi, H. B.; Dunitz, J. D. Acta Crystallogr., Sect. B 1978, 34, 1793; (d)
Raithby, P. R.; Shields, G. P.; Allen, F. H.; Motherwell, W. D. S. Acta Crystallogr.,
Sect. B 2000, 56, 444.
½
a 2D5
ꢂ
¼ þ29:2 (c 1.0, CHCl3). HPLC data for aldol adducts derived
from NiCl2[(ꢀ)-sparteine](2) catalyst: major enantiomer (S)
tr = 22.57 min, minor enantiomer (R) tr = 20.4 min; 54% ee;
½
a 2D5
ꢂ
¼ ꢀ38:0 (c 1.0, CHCl3).
Acknowledgments
PJAJ thank UGC, New Delhi for the award of fellowship, and KLP
thanks CSIR, New Delhi for the award of fellowship.
References
1. Agranat, I.; Caner, H.; Caldwell, J. J. Nat. Rev. Drug Disc. 2002, 1, 753.
2. For recent reviews, see: (a) Zanoni, G.; Castronovo, F.; Franzini, M.; Vidari, G.;
Giannini, E. Chem. Soc. Rev. 2003, 32, 115; (b) Kim, Y. H. Acc. Chem. Res. 2001, 34,
955; (c) Sibi, M. P.; Liu, M. Curr. Org. Chem. 2001, 5, 719; (d) Bartók, M. Chem.
Rev. 2010, 110, 1663.
16. The internal coordinates, r1, r2, r3, r4, h12, h13, h14, h23, h24, and h34 transform as
2A1 + E +2T2 irreducible representation for perfect Td symmetry. For the
CuCl2[(ꢀ)-sparteine]
1 complex, the crystallographically observed internal
coordinates around the tetrahedron are: r1 = 2.258 Å; r2 = 2.238 Å, r3 = 2.021 Å,
r4 = 2.003 Å, h12 = 106.93°; h13 = 101.73°; h14 = 134.12°; h23 = 126.53°;
3. Some classic examples of enantio-divergent catalytic synthesis: see: in
asymmetric aldol reaction: (a) Evans, D. A.; Murry, J. A.; Kozlowski, M. C. J.
Am. Chem. Soc. 1996, 118, 5814; (b) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.;
Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. 1999,
121, 669; (c) Evans, D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W. J. Am.
Chem. Soc. 1999, 121, 686; (d) Matsunaga, H.; Yamada, U.; Ide, T.; Ishizuka, T.;
Kunieda, T. Tetrahedron: Asymmetry 1999, 10, 3095; (e) Kobayashi, S.; Horibe,
M. J. Am. Chem. Soc. 1994, 116, 9805; (f) Kobayashi, S.; Horibe, M. Tetrahedron
1996, 52, 7277; in asymmetric ene reactions: see: (g) Johannsen, M.; Jørgensen,
K. A. J. Org. Chem. 1995, 60, 5757; (h) Evans, D. A.; Burgey, C. S.; Paras, N. A.;
Vojkovsky, T.; Tregay, S. W. J. Am. Chem. Soc. 1998, 120, 5824; in asymmetric
cycloaddition reaction, see: (i) Corey, E. J.; Imai, N.; Zhang, H.-Y. J. Am. Chem.
Soc. 1991, 113, 728; (j) Evans, D. A.; Murry, J. A.; von Matt, P.; Norcross, R. D.;
Miller, S. J. Angew. Chem., Int. Ed. 1995, 34, 798; (k) Evans, D. A.; Miller, S. J.;
Lectka, T.; von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559; (l) Ghosh, A. K.;
Mathivanan, P.; Cappiello, J. Tetrahedron Lett. 1996, 37, 3815; (m) Corey, E. J.;
Ishihara, K. Tetrahedron Lett. 1992, 33, 6807; for an excellent comprehensive
account on asymmetric Diels–Alder, aldol, ene, and Michael additions see: (n)
Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325.
h24 = 100.06°; h34 = 90.52°; for the NiCl2[(ꢀ)-sparteine]
2 complex, the
crystallographically observed internal coordinates around tetrahedron are:
r1 = 2.236 Å; r2 = 2.234 Å, r3 = 2.032 Å, r4 = 2.037 Å, h12 = 119.67°; h13 = 103.10°;
h14 = 110.34°; h23 = 123.85°; h24 = 105.99°; h34 = 89.52°. Note: The internal
coordinates r1, r2, r3 and r4 describe crystallographically observed M–Cl1, M–
Cl2, M–N1 and M–N2 bond lengths while hij represents corresponding
crystallographically observed bond angles. The atoms are labelled (1–4) in
the order of decreasing bond lengths so that the corresponding bond angles
between displacement vectors lie in the same asymmetric unit of the vector
space defined by symmetry coordinates.
17. Forthe CuCl2[(ꢀ)-sparteine]1 complex,thecomputeddisplacement vectorsalong
respective symmetry coordinates are: S1(A1) = 4.26 Å, S3a(T2) = 0.235 Å, S3b(T2) =
ꢀ0.001 Å, S3c(T2) = ꢀ0.019 Å, S2a(E) = ꢀ19.50°, S2b(E) = ꢀ29.43°, S4a(T2) = 11.60°,
S4b(T2) = 1.18°, S4c(T2) = 5.37°, S5(A1) = 269.4°; for the NiCl2[(ꢀ)-sparteine]
2
complex, computed displacement vectors along respective symmetry
coordinates are: S1(A1) = 4.26 Å, S3a(T2) = 0.206 Å, S3b(T2) = ꢀ0.0015 Å, S3c(T2) =
0.0035 Å, S2a(E) = ꢀ7.19°, S2b(E) = ꢀ12.55°, S4a(T2) = 21.30°, S4b(T2) = ꢀ2.04°,
S4c(T2) = ꢀ9.55°, S5(A1) = 266.4°.
18. (a) Figgis, B. N. Introduction to Ligand Fields; John Wiley and Sons: New York,
1966; (b) The balance of electronic and steric factors in 1 and 2 complexes are
directly reflected in the asymmetry of M–N bond lengths in their X-ray
structures. The Cu–N1 facing the endo-ring has a shorter Cu–N bond length
(Cu–N1 = 2.003 (3) Å) compared to 2.021 (3) Å for Cu–N2 facing the exo-ring.
In complex 2, both Ni–N1 and Ni–N2 bond distances correspond to a more
symmetric configuration with 2.032 (4) Å and 2.027 (4) Å, respectively, which
is slightly longer than those observed in complex 1.
4. Maheswaran, H.; Prasanth, K. L.; Krishna, G. G.; Ravikumar, K.; Sridhar, B.;
Lakshmi Kantam, M. Chem. Commun. 2006, 39, 4066.
5. Absolute configuration of the aldol adducts are tentatively assigned (R) or (S)
by comparison with relative signs of the specific rotations data of aldol with
those reported for 5a and 5g as reference compounds, see: Sugasawa, T.;
Toyoda, T. Tetrahedron Lett. 1979, 16, 1423. By this analogy, a (+)-aldol adduct is
tentatively assigned as the (R)-isomer while a (ꢀ)-aldol adduct is assigned as
the (S)-isomer.
19. Cirera, J.; Alemany, P.; Alvarez, S. Chem. Eur. J. 2004, 10, 190.
6. Kiyooka, S.; Takeshita, Y.; Tanaka, Y.; Higaki, T.; Wada, Y. Tetrahedron Lett. 2006,
47, 4453.
20. (a) Jasiewicz, B.; Sikorska, E.; Khmelinskii, I. V.; Warzajtis, B.; Rychlewska, U.;
Boczon, W. l.; Sikorski, M. J. Mol. Struct. 2004, 707, 89; (b) Boschmann, E.;
Weinstock, L. M.; Carmack, M. Inorg. Chem. 1974, 13, 1297; (c) Lee, Y. M.; Kwon,
M.-A.; Kang, S. K.; Jeong, J. H.; Choi, S.-N. Inorg. Chem. Commun. 2003, 6, 197.
21. The rms overlay of X-ray structures (1 and 2) was obtained by calculations
involving published X-ray crystal structure data (see Ref. 13) using Mercury
software (Version 1.4.1). For further details see: Bruno, I.; Cole, J. J. C.;
Edgington, P. R.; Kessler, M. K.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R.
Acta. Cryst., Sect. B 2002, 58, 389–397.
7. For
a recent review on double catalytic activation (DCA) protocol: see
Kanemasa, S.; Ito, K. Eur. J. Org. Chem. 2004, 4741.
8. Fluoride anions are excellent catalysts for Mukaiyama aldol reaction: see (a)
Nakamura, E.; Shimizu, M.; Kuwajima, I.; Sakata, J.; Yokoyama, K.; Noyori, R. J.
Org. Chem. 1983, 48, 932; (b) Denmark, S. E.; Lee, W. Chem. Asian J. 2008, 3, 327;
(c) Denmark, S. E.; Lee, W. J. Org. Chem. 1994, 59, 707.
9. Fluoride anions show an extremely high affinity for the silicon atom due to
high homolytic bond energy; see: Pauling, L. The Nature of Chemical Bond, 3rd