Organometallics 2010, 29, 6057–6064 6057
DOI: 10.1021/om100818y
Hydrosilylation of Carbonyl-Containing Substrates Catalyzed by an
Electrophilic η1-Silane Iridium(III) Complex
Sehoon Park and Maurice Brookhart*
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina 27599-3290, United States
Received August 20, 2010
Hydrosilylation of a variety of ketones and aldehydes using the cationic iridium catalyst (POCOP)-
Ir(H)(acetone)þ, 1 (POCOP = 2,6-bis(di-tert-butylphosphinito)phenyl), is reported. With triethyl silane,
all but exceptionally bulky ketones undergo quantitative reactions employing 0.5 mol % catalyst in
20-30 min at 25 °C. Hydrosilylation of esters and amides results in over-reduction and cleavage of C-O
and C-N bonds, respectively. The diastereoselectivity of hydrosilylation of 4-tert-butyl cyclohexanone
has been examined using numerous silanes and is highly temperature dependent. Using EtMe2SiH, anal-
ysis of the ratio of cis:trans hydrosilylation products as a function of temperature yields values for ΔΔH‡
(ΔH‡(trans) - ΔH‡(cis)) and ΔΔS‡ (ΔS‡(trans) - ΔS‡(cis)) of -2.5 kcal/mol and -6.9 eu, respectively.
Mechanistic studies show that the ketone complex (POCOP)Ir(H)(ketone)þ is the catalyst resting state
and is in equilibrium with low concentration of the silane complex (POCOP)Ir(H)(HSiR3)þ. The silane
complex transfers R3Siþ to ketone, forming the oxocarbenium ion R3SiOCR02þ, which is reduced by the
resulting neutral dihydride 3, (POCOP)Ir(H)2, to yield product R3SiOCHR02 and (POCOP)IrHþ, which
closes the catalytic cycle.
Introduction
Scheme 1
Hydrosilylation of carbonyl functionalities is an exten-
sively explored and widely used synthetic methodology.1
This process provides an alternative to hydride reductions
of ketones and aldehydes as well as a convenient one-step
process for converting these substrates directly to protected
alcohols, which circumvents the normal two-step procedure:
reduction to alcohol followed by silyl protection. Several
different hydrosilylation mechanisms have been shown to
operate, dependent on the nature of the catalyst. Late metal
catalysts typically proceed through a “Chalk-Harrod”
pathway, in which the key step involves oxidative addition
of the silane to a low-valent metal center.2 Early metal
catalysts where oxidative addition is disfavored proceed via
σ bond metathesis mechanisms.3
*To whom correspondence should be addressed. E-mail: mbrookhart@
unc.edu.
(1) Reviews on hydrosilation: (a) Ojima, I.; Li, Z.; Zhu, J. In The
Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.;
John Wiley & Sons: New York, 1998; Vol. 2. (b) Nishiyama, H.; Itoh, K. In
Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: New York,
ꢀ
2000. (c) Marciniec, B.; Gulinski, J. J. Organomet. Chem. 1993, 446, 15.
(2) (a) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16.
(b) Ojima, I.; Nihonyanagi, M.; Nagai, Y. J. Chem. Soc., Chem. Commun.
1972, 938. (c) Ojima, I.; Nihonyanagi, M.; Kogure, T.; Kumagai, M.; Horiuchi,
S.; Nakatsugawa, K.; Nagai, Y. J. Organomet. Chem. 1975, 94, 449.
(d) Kobayashi, M.; Koyama, T.; Ogura, K.; Seto, S.; Ritter, F. J.; Brueggemann-
Rotgans, I. E. M. J. Am. Chem. Soc. 1980, 102, 6602. (e) Semmelhack, M. F.;
Misra, R. N. J. Org. Chem. 1982, 47, 2469. (f ) Ojima, I.; Kogure, T.
Organometallics 1982, 1, 1390. (g) Brunner, H.; Becker, R.; Riepl, G.
Organometallics 1984, 3, 1354. (h) Brunner, H.; Kurzinger, A. J. Organomet.
Chem. 1988, 346, 413. A catalytic reductive silation of 4-tert-butyl cyclo-
hexanone using 0.012% Zn(OSO2CH3)2 in combination with lithium
hydride and chlorotrimethylsilane gives predominantly the less stable
reduction product with 72% cis-selectivity: (i) Ohkuma, T.; Hashiguchi,
S.; Noyori, R. J. Org. Chem. 1994, 59, 217. ( j) Zheng, G. Z.; Chan, T. H.
Organometallics 1995, 14, 70. (k) Wright, M. E.; Cochran, B. B. Organome-
tallics 1996, 15, 317. (l) Nagashima, H.; Suzuki, A.; Iura, T.; Ryu, K.; Matsubara,
K. Organometallics 2000, 19, 3579. (m) Tao, B.; Fu, G. C. Angew. Chem., Int.
Ed. 2002, 41, 3892. (n) Gade, L. H.; Cesar, V.; Bellemin-Laponnaz, S. Angew.
Chem., Int. Ed. 2004, 43, 1014.
(3) (a) Glaser, P. B.; Tilley, T. D. J. Am. Chem. Soc. 2003, 125, 13640.
(b) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090.
(c) Caseri, W.; Pregosin, P. S. Organometallics 1988, 7, 1373. (d) Hanna,
P. K.; Gregg, B. T.; Cutler, A. R. Organometallics 1991, 10, 31.
(e) Cavanaugh, M. D.; Gregg, B. T.; Cutler, A. R. Organometallics 1996, 152764.
(f ) Gregg, B. T.; Cutler, A. R. J. Am. Chem. Soc. 1996, 118, 10069.
(g) Kennedy-Smith, J. J.; Nolin, K. A.; Gunterman, H. P.; Toste, F. D. J. Am.
Chem. Soc. 2003, 125, 4056. (h) Nolin, K. A.; Ahn, R. W.; Toste, F. D. J. Am.
Chem. Soc. 2005, 127, 17168. (i) Blanc, A.; Toste, F. D. Angew. Chem., Int.
Ed. 2006, 45, 2096. (j) Nolin, K. A.; Krumper, J. R.; Pluth, M. D.; Bergman,
R. G.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 14684. (k) Fernandes, A. C.;
Fernandes, R.; Romao, C. C.; Royo, B. Chem. Commun. 2005, 213. (l) Royo,
B.; Romao, C. C. J. Mol. Catal. A: Chem. 2005, 236, 107. (m) Ison, E. A.;
Trivedi, E. R.; Corbin, E. A.; Abu-Omar, M. M. J. Am. Chem. Soc. 2005,
127, 15374. (n) Ison, E. A.; Cessarich, J. E.; Du, G. D.; Franwick, P. E.; Abu-
Omar, M. M. Inorg. Chem. 2006, 45, 2385. (o) Du, G. D.; Franwick, P. E.;
Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 5180. (p) Carter, M. B.;
Schiott, B.; Guiterrez, A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116,
11667. (q) Yun, J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 5640.
r
2010 American Chemical Society
Published on Web 10/18/2010
pubs.acs.org/Organometallics