M. Ohashi et al. / Tetrahedron Letters 51 (2010) 5537–5539
5539
Acknowledgments
+•
(CH2)n
Ph
Ph
(CH2)n
(CH )
2 n base
Ph
Ph
Ph
Ph
PET
This work was partially supported by Grant-in-Aids for Scien-
tific Research on Priority Areas (429) (16033252), Scientific
Research (B) (Nos. 15350026 and 20044027), JSPS Fellows (No.
20-4975), and the Cooperation for Innovative Technology and
Advanced Research in Evolutional Area (CITY AREA) program from
the Ministry of Education, Culture, Sports, Science and Technology
(MEXT) of Japan.
-
-
19-CP*
-•
EWG1 EWG2
9-CP
EWG1 EWG2
EWG1
EWG2
(CH2)n
hν
9-CP
Ph
-
Ph
(CH2)n
Ph
Ph
Ph
Ph
(CH2)n
H2O
BET
EWG1
EWG2
EWG1
EWG2
EWG1
EWG2
Scheme 2. Plausible mechanism (Path I): PET from the alkene moeity.
Supplementary data
Supplementary data associated with this article can be found in
(CH2)n
Ph
Ph
(CH )
2 n base
(CH2)n
Ph
Ph
Ph
Ph
PET
-
19-CP*
EWG2
-•
9-CP EWG1 EWG2
EWG1
EWG1
EWG2
hν
9-CP
References and notes
1. Fuji, K. Chem. Rev. 1993, 93, 2037–2066.
2. Sierra, M. A.; de la Torre, M. C. Dead Ends and Detours; Wiley-VCH: Weinheim,
2004. Chapter 8.
Scheme 3. Plausible mechanism (Path II): PET from the anion of active methylene
moeity.
3. (a) Gassman, P. G.; Bottorff, K. J. J. Am. Chem. Soc. 1987, 109, 7547–7548; (b)
Gassman, P. G.; De Silva, S. A. J. Am. Chem. Soc. 1991, 113, 9870–9872.
4. (a) Mizuno, K.; Tamai, T.; Nishiyama, T.; Tani, K.; Sawasaki, M.; Otsuji, Y. Angew.
Chem., Int. Ed. Engl. 1994, 33, 2113–2115; (b) Nishiyama, Y.; Wada, T.; Asaoka,
S.; Mori, T.; McCarty, T. A.; Kraut, N. D.; Bright, F. V.; Inoue, Y. J. Am. Chem. Soc.
2008, 130, 7526–7527.
5. Yoon, U.-C.; Quillen, S. L.; Mariano, P. S.; Swanson, R.; Stavinoha, J. L.; Bay, E. J.
Am. Chem. Soc. 1983, 105, 1204–1218.
6. (a) Ishii, H.; Yamaoka, R.; Imai, Y.; Hirano, T.; Maki, S.; Niwa, H.; Hashizume, H.;
Iwasaki, F.; Ohashi, M. Tetrahedron Lett. 1998, 39, 9501–9504; (b) Ishii, H.; Imai,
Y.; Hirano, T.; Maki, S.; Niwa, H.; Ohashi, M. Tetrahedron Lett. 2000, 41, 6467–
6471.
7. (a) Ohashi, M.; Nakatani, K.; Maeda, H.; Mizuno, K. Org. Lett. 2008, 10, 2741–
2743; (b) Ohashi, M.; Nakatani, K.; Maeda, H.; Mizuno, K. J. Photochem.
Photobiol. A: Chem. 2010, 214, in press.
8. (a) Mizuno, K.; Pac, C.; Sakurai, H. J. Am. Chem. Soc. 1974, 96, 2993–2994; (b)
Ohashi, M.; Maeda, H.; Mizuno, K. Chem. Lett. 2006, 35, 482–483; (c) Ohashi,
M.; Nakatani, K.; Maeda, H.; Mizuno, K. J. Org. Chem. 2008, 73, 8348–8351; (d)
Ohashi, M.; Kano, Y.; Ikeda, H.; Mizuno, K. Tetrahedron 2010, 66, 3770–3774.
9. (a) Neunteufel, R. A.; Arnold, D. R. J. Am. Chem. Soc. 1973, 95, 4080–4081; (b)
Mangion, D.; Arnold, D. R. Acc. Chem. Res. 2002, 35, 297–304.
pair. Nucleophilic addition of the anion moiety to the radical cation
moiety then takes place to form a cyclic radical intermediate
that accepts an electron from 9-CPÅꢀ (back electron transfer; BET)
to form an anion which is protonated to form the carbocyclic prod-
uct. An alternative route resembles the mechanism for radical
cyclization (Scheme 3). In it, PET occurs from the anion of active
methylene moiety to the excited state of the sensitizer to yield a
radical that undergoes intramolecular addition to the alkene to af-
ford the same cyclic radical that serves as an intermediate in the
other mechanistic pathway. Since both PET pathways should be
highly exergonic (
D
Get = ꢀ0.98 and ꢀ2.96 eV when 1a is used)11–13
and both cyclization steps should take place smoothly, it is possible
that both are involved in this novel cyclization process.
In conclusion, a novel and facile synthetic method for the con-
struction of cycloalkane derivatives that relies on intramolecular
PPA or radical cyclization reactions of active methylene com-
pounds tethered to aryl-substituted alkenes has been developed
in this effort. When ethyl cyanoacetate is used as a pro-asymmetric
active methylene moiety, the reaction proceeds with a high degree
of diastereoselectivity. Moreover, the study has uncovered the first
examples in which carbon nucleophiles are employed in intramo-
lecular PPA reactions.
10. Yasuda, M.; Mizuno, K.. In Handbook of Photochemistry and Photobiology; Nalwa,
H. S., Ed.; American Scientific: Los Angeles, 2003; Vol. 2,. Chapter 8.
11. Oxidation potentials of 3a and (NC)2CHꢀ are +1.66 V and +0.55 V12 versus SCE,
and the reduction potential of 9-CP is ꢀ0.87 V versus SCE. Excited singlet state
energy of 9-CP is 3.45 eV.
equation (see Ref. 13).
DGet values were calculated by use of Rehm–Weller
12. (a) Niyazymbetov, M. E.; Rongfeng, Z.; Evans, D. H. J. Chem. Soc., Perkin Trans. 2
1996, 1957–1961; (b) Daasbjerg, K.; Knudsen, S. R.; Sonnichsen, K. N.; Andrade,
A. R.; Pedersen, S. U. Acta Chem. Scand. 1999, 53, 938–948.
13. Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259–271.
Finally, the new process might be synthetically useful since it
proceeds under relatively mild conditions.