Catalytic, Enantioselective Selenoetherification of Olefins
A R T I C L E S
cyclic ethers or lactones, respectively. Once introduced, the
organoselenium moiety provides a versatile intermediate for
further structural manipulation. Specifically, the C-Se bond can
stabilize R-carbanions,10 serve as a radical precursor,11 or
undergo syn oxidative elimination via the selenoxide.12 Ulti-
mately, the facile installation and subsequent elaboration of
organoselenium functionalities in this manner allows for the
rapid generation of structurally and stereochemically rich ring
systems from simple olefins. As such, electrophilic selenofunc-
tionalizations of alkenes have found widespread use as key steps
in the total synthesis of complex biologically active molecules.1
As part of a broadly based program for the development of
asymmetric transformations mediated by main-group elements,17
heavier chalcogens (S, Se, Te) have been identified as elements
for which a rich chemistry is extant, albeit with a dearth of
catalytic, asymmetric variants.18 We describe here the inspira-
tion, design, development, and mechanistic study of the first
catalytic, asymmetric selenoetherification of unactivated olefins
by harnessing the paradigm of “Lewis base activation of Lewis
acids”.19
Background
1. Lewis Base Catalysis. The concept of “Lewis base activa-
tion of Lewis acids” has been successfully exploited in the
development of a myriad of catalytic, asymmetric reactions.19
In general, these transformations involve the in situ generation
of the catalytically active adduct of a Lewis basic donor and a
Lewis acid acceptor, characterized by three-center, four-electron
(3c-4e) hypervalent bonds (Scheme 2).20 In the limit of
polarization, ionization of one of the acceptor ligands can
generate a cationic Lewis acid. As depicted in Scheme 2, such
complex formation enhances the electrophilicity of the nascent
Lewis acid, thereby providing the chemical potential for
reactivity. Furthermore, the use of a chiral Lewis base generates
a chiral adduct, which allows for asymmetric induction via the
activated species. This concept has been most effectively applied
to catalytic, asymmetric reactions involving silicon-based Lewis
acids (e.g., SiCl4).21 However, recent work from these labora-
tories and others has demonstrated that this form of catalysis
can be applied to the reactions of Group 17 Lewis acids as
well,22,23 such as halofunctionalization of alkenes. Catalytic,
asymmetric selenofunctionalization of unactivated alkenes
presents yet another opportunity for the application of Lewis
base catalysis, in this case with Group 16 Lewis acids.
Despite the established synthetic utility of these selenofunc-
tionalization reactions, there is no report on a catalytic,
enantioselective variant of these transformations.13 To date, the
synthesis of enantiomerically enriched selenofunctionalized
products has relied upon either the presence of stereogenic
centers on the olefin substrate14 or the use of chiral selenylating
agents.15 Although both of these strategies have allowed for
highly diastereoselective selenofunctionalizations, they do have
drawbacks that limit their efficiency, cost effectiveness, and
widespread application. The former approach necessitates the
requirement of an appropriately positioned stereocontrolling
element on the olefin substrate, which might not be readily
accessible in the context of complex molecule synthesis. The
latter strategy often requires lengthy syntheses of enantiomeri-
cally pure selenium electrophiles as well as the use of expensive
chiral modifiers in stoichiometric amounts. Hence, the develop-
ment of catalytic, enantioselective selenofunctionalization reac-
tions remains an important challenge in organic chemistry.16
(9) (a) Campos, M. D. M.; Petragnani, N. Chem. Ber. 1960, 93, 317–
320. (b) Clive, D. L. J.; Chittattu, G. J. Chem. Soc., Chem. Commun.
1977, 484–485. (c) Nicolaou, K. C.; Lysenko, Z. J. Am. Chem. Soc.
1977, 99, 3185–3187. (d) Nicolaou, K. C.; Seitz, S. P.; Sipio, W. J.;
Blount, J. F. J. Am. Chem. Soc. 1979, 101, 3884–3893. (e) Clive,
D. L. J.; Russell, C. G.; Chittattu, G.; Singh, A. Tetrahedron 1980,
36, 1399–1408.
Scheme 2
(10) (a) Petragnani, N.; Ferraz, H. M. C. Synthesis 1978, 476–478. (b)
Reich, H. J. Acc. Chem. Res. 1979, 12, 22–30.
(11) (a) Clive, D. L. J.; Chittattu, G. J.; Farina, V.; Kiel, W. A.; Menchen,
S. M.; Russell, C. G.; Singh, A.; Wong, C. K.; Curtis, N. J. J. Am.
Chem. Soc. 1980, 102, 4438–4442. (b) Kraus, G. A.; Taschner, M. J.
J. Org. Chem. 1980, 45, 1175–1176. (c) Bachi, M. D.; Hoornaert, C.
Tetrahedron Lett. 1981, 22, 2693–2694. (d) Burke, S. D.; Fobare,
W. F.; Armistead, D. M. J. Org. Chem. 1982, 47, 3348–3350.
(12) (a) Jones, D. N.; Mundy, D.; Whitehou, R. D. J. Chem. Soc., Chem.
Commun. 1970, 86–87. (b) Reich, H. J.; Wollowitz, S.; Trend, J. E.;
Chow, F.; Wendelborn, D. F. J. Org. Chem. 1978, 43, 1697–1705.
(13) (a) Wirth, T.; Hauptli, S.; Leuenberger, M. Tetrahedron: Asymmetry
1998, 9, 547–550. (b) Tiecco, M.; Carlone, A.; Sternativo, S.; Marini,
F.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2007, 46, 6882–
6885.
A hypothetical catalytic cycle for selenofunctionalization of
olefins using a Lewis base catalyst and a selenium(II) source is
depicted in Figure 1. Following the concept articulated above,
the weak selenium(II) electrophile will combine with a chiral
Lewis base to form adduct 1. Such a chirally modified and
kinetically activated complex can potentially discriminate the
enantiotopic faces of a prochiral alkene to afford a diastereo-
enriched seleniranium ion (3). Finally, nucleophilic capture of
(14) Rodriguez-Escrich, C.; Olivella, A.; Urp´ı, F.; Vilarrasa, J. Org. Lett.
2007, 9, 989–992.
(15) (a) Deziel, R.; Goulet, S.; Grenier, L.; Bordeleau, J.; Bernier, J. J.
Org. Chem. 1993, 58, 3619–3621. (b) Deziel, R.; Malenfant, E. J.
Org. Chem. 1995, 60, 4660–4662. (c) Deziel, R.; Malenfant, E.;
Thibault, C.; Frechette, S.; Gravel, M. Tetrahedron Lett. 1997, 38,
4753–4756. (d) Fragale, G.; Neuberger, M.; Wirth, T. Chem. Commun.
1998, 1867–1868. (e) Wirth, T. Tetrahedron 1999, 55, 1–28. (f) Wirth,
T. Angew. Chem., Int. Ed. 2000, 39, 3740–3749. (g) Tiecco, M.;
Testaferri, L.; Marini, F.; Bagnoli, L.; Santi, C.; Temperini, A.;
Sternativo, S.; Tomassini, C. Phosphorus, Sulfur Silicon 2005, 180,
729–740. (h) Browne, D. M.; Wirth, T. Curr. Org. Chem. 2006, 10,
1893–1903.
(17) (a) Fukuzawa, S.-I.; Takahashi, K.; Kato, H.; Yamazaki, H. J. Org.
Chem. 1997, 62, 7711–7716. (b) Denmark, S. E.; Stavenger, R. A.
Acc. Chem. Res. 2000, 33, 432–440. (c) Denmark, S. E.; Fujimori, S.
In Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Wein-
heim, 2004; Vol. 2, Chap. 7.
(18) (a) Finet, J.-P. Ligand Coupling Reactions with Heteroaromatic
Compounds; Pergamon: Oxford, 1998. (b) Chemistry of HyperValent
Compounds; Akiba, K., Ed.; Wiley-VCH: Weinheim, 1999. (c) Main
Group Metals in Organic Synthesis; Yamamoto, H., Oshima, K., Eds.;
Wiley-VCH: Weinheim, 2005; Vols. 1 and 2.
(16) Ongoing work in these laboratories involves the development of equally
challenging catalytic, enantioselective thiofunctionalization of olefins.
For preliminary mechanistic work toward this goal, see: (a) Denmark,
S. E.; Collins, W. R.; Cullen, M. D. J. Am. Chem. Soc. 2009, 131,
3490–3491. (b) Denmark, S. E.; Vogler, T. Chem. Eur. J. 2009, 15,
11737–11745.
(19) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–
1638.
(20) (a) Gutmann, V. The Donor-Acceptor Approach to Molecular
Interactions; Plenum Press: New York, 1978. (b) Jensen, W. B. The
Lewis Acid-Base Concept; Wiley-Interscience: New York, 1980.
9
J. AM. CHEM. SOC. VOL. 132, NO. 44, 2010 15753