5738
G. Sabitha et al. / Tetrahedron Letters 51 (2010) 5736–5739
OR OR
OR OH
O
O
a
O
O
b, c
6
7
+
OR OR
OR OR
30: R = MOM
Exclusive product
31: R = H
1: R = Ac
Grubbs'II
Scheme 3. Reagents and conditions: (a) anhydrous CH2Cl2, reflux, 0.5 h, 86%; (b) 3 N HCl, MeOH/AcCN (1:1), 0 °C–rt, 8 h, 80%; (c) Ac2O, TEA, DMAP, anhydrous CH2Cl2, 0 °C–rt,
0.5 h, 91%.
Villavicencio, M. J.; Novelo, M.; Ibarra, P.; Chai, H.; Pezzuto, J. M. J. Nat. Prod.
1993, 56, 583–593.
7. (a) Romines, K. R.; Chrusciel, R. A. Curr. Med. Chem. 1995, 2, 825–838; (b)
refluxing in ethanol in the presence of Zn dust eliminated to afford
allylic alcohol 19 and the resulting alcohol was protected as MOM
ether 20. Asymmetric dihydroxylation15 of 20 using AD-mix-b in
Aristoff, P. A. Drugs Future 1998, 23, 995–999; (c) Hagen, S. E.; Vara-Prasad, J. V.
N.; Tait, B. D. Adv. Med. Chem. 2000, 5, 159–195; (d) Hagen, S. E.; Domagala, J.
M.; Gajda, C.; Lovdahl, M.; Tait, B. D.; Wise, E.; Holler, T.; Hupe, D.; Nouhan, C.;
Urumov, A.; Zeikus, G.; Zeikus, E.; Lunney, E. A.; Pavlovsky, A.; Gracheck, S. J.;
tBuOH/H2O (1:1) at 0 °C gave the diol 21 in 90% yield (dr 9:1).
Selective conversion of the primary hydroxyl group of 21 into a
tosylate was carried out using tosyl chloride in the presence of
TEA and nBu2SnO in CH2Cl2 to give 22 in 91% yield, which was re-
duced to the methyl compound by using LiAlH4 in THF in 82% yield.
The secondary alcohol was protected as its MOM ether 25 and the
benzyl group was removed using Pd/C, H2 in EtOAc to afford the
primary alcohol 26, which was converted into the corresponding
aldehyde 27 under Swern oxidation conditions. To create a fourth
stereogenic center with the required stereochemistry, a chelation-
controlled vinyl Grignard reaction16 was performed. Thus, adding a
solution of vinylmagnesium bromide in THF to the complex
formed between 27 and 1 equiv of magnesium bromide etherate
in CH2Cl2, provided the chelation-controlled product 6 in excellent
yield and with high (>95%) diastereofacial selectivity.
The three MOM groups were removed and subsequently pro-
tected as acetates to give tetraacetate derivative 29, which was ex-
pected to give directly the target molecule 1 when subjected to
cross-metathesis reaction with vinyl lactone 7 using Grubb’s II gen-
eration catalyst. But, this reaction failed to give the desired target 1,
instead it gave exclusively the dimer of vinyl lactone (Scheme 2).
However, the tri MOM derivative 6 underwent CM reaction
smoothly with vinyl lactone 7 using Grubb’s II generation catalyst
to yield the desired lactone 30 (86%) exclusively (Scheme 3).
Subsequent removal of MOM groups in 30 using 3 N HCl in
MeOH/CH3CN (1:1), at 0 °C afforded tetrahydroxy derivative 31
(80%). Acetylation of 31 with acetic anhydride in the presence of
TEA and DMAP furnished the target lactone, anamarine 117 in
91% yield. The spectral data of the synthetic compound matched
with the literature values.14c
Saunders, J. M.; VanderRoest, S.; Brodfuehrer, J. J. Med. Chem. 2001, 44, 2319–
2332; (e) Agrawal, V. K.; Singh, J.; Mishra, K. C.; Khadikar, P. V.; Jaliwala, Y. A.
ARKIVOC 2006, 162–177.
8. (a) Inayat-Hussain, S. H.; Annuar, B. O.; Din, L. B.; Taniguchi, N. Toxicol. Lett.
2002, 131, 153–159; (b) Inayat-Hussain, S. H.; Annuar, B. O.; Din, L. B.; Ali, A.
M.; Ross, D. Toxicol. In Vitro 2003, 17, 433–439; (c) Chan, K. M.; Rajab, N. F.;
Ishak, M. H. A.; Ali, A. M.; Yusoff, K.; Din, L. B.; Inayat-Hussain, S. H. Chem. Biol.
Interact. 2006, 159, 129–140.
9. For further literature related to this important biological property, see, for
example: (a) Blatt, N. B.; Glick, G. D. Bioorg. Med. Chem. 2001, 9, 1371–1384; (b)
Huang, Z. W. Chem. Biol. 2002, 9, 1059–1072.
10. Kikuchi, H.; Sasaki, K.; Sekiya, J.; Maeda, Y.; Amagai, A.; Kubohara, Y.; Ohsima,
Y. Bioorg. Med. Chem. 2004, 12, 3203–3214.
11. See, for example: (a) Stampwala, S. S.; Bunge, R. H.; Hurley, T. R.; Willmer, N. E.;
Brankiewicz, A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C. J. Antibiot. 1983, 36,
1601–1605; (b) Nagashima, H.; Nakamura, K.; Goto, T. Biochem. Biophys. Res.
Commun. 2001, 287, 829–832; (c) Raoelison, G. E.; Terreaux, C.; Queiroz, E. F.;
Zsila, F.; Simonyi, M.; Antus, S.; Randriantsoa, A.; Hostettmann, K. Helv. Chim.
Acta 2001, 84, 3470–3476; (d) Lewy, D. S.; Gauss, C.-M.; Soenen, D. R.; Boger, D.
L. Curr. Med. Chem. 2002, 9, 2005–2032; (e) Larsen, A. K.; Escargueil, A. E.;
Skladanowski, A. Pharmacol. Ther. 2003, 99, 167–181; (f) Richetti, A.; Cavallaro,
A.; Ainis, T.; Fimiani, V. Immunopharmacol. Immunotoxicol. 2003, 25, 441–449;
(g) Koizumi, F.; Ishiguro, H.; Ando, K.; Kondo, H.; Yoshida, M.; Matsuda, Y.;
Nakanishi, S. J. Antibiot. 2003, 56, 603–609.
12. Sabitha, G.; Gopal, P.; Reddy, C. N.; Yadav, J. S. Tetrahedron Lett. 2009, 46, 6298–
6302.
13. (a) Sabitha, G.; Sudhakar, K.; Reddy, N. M.; Rajkumar, M.; Yadav, J. S.
Tetrahedron Lett. 2005, 46, 6567–6570; (b) Sabitha, G.; Narjis, F.; Swapna, R.;
Yadav, J. S. Synthesis 2006, 17, 2879–2884; (c) Sabitha, G.; Reddy, E. V.;
Yadagiri, K.; Yadav, J. S. Synthesis 2006, 19, 3270–3274; (d) Sabitha, G.;
Sudhakar, K.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 8599–8602; (e) Sabitha, G.;
Bhaskar, V.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 8179–8181; (f) Sabitha, G.;
Swapna, R.; Reddy, E. V.; Yadav, J. S. Synthesis 2006, 24, 4242–4246; (g) Sabitha,
G.; Bhikshapathi, M.; Yadav, J. S. Synth. Commun. 2007, 37(4), 561–569; (h)
Sabitha, G.; Gopal, P.; Yadav, J. S. Synth. Commun. 2007, 37, 1495–1502; (i)
Sabitha, G.; Yadagiri, K.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 1651–1652; (j)
Sabitha, G.; Yadagiri, K.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 8065–8068; (k)
Sabitha, G.; Bhaskar, V.; Yadav, J. S. Synth. Commun. 2008, 38, 1–12; (l) Sabitha,
G.; Bhaskar, V.; Siva Sankara Reddy, S.; Yadav, J. S. Tetrahedron 2008, 64(44),
10207–10213; (m) Sabitha, G.; Bhaskar, V.; Siva Sankara Reddy, S.; Yadav, J. S.
Synthesis 2009, 3285; (n) Sabitha, G.; Gopal, P.; Reddy, C. N.; Yadav, J. S.
Synthesis 2009, 3301; (o) Sabitha, G.; Fatima, N.; Gopal, P.; Reddy, C. N.; Yadav,
J. S. Tetrahedron: Asymmetry 2009, 20, 184–191; (p) Sabitha, G.; Fatima, N.;
Reddy, E. V.; Yadav, J. S. Tetrahedron Lett. 2008, 49(42), 6087–6089; (q)
Synthesis of Obolactone, Sabitha, G.; Prasad, M. N.; Shankaraiah, K. S.; Jadav, J.
S. Synthesis 2010, 1171–1175; (r) Sabitha, G.; Reddy, N. M.; Prasad, M. N.;
Yadav, J. S. Helv. Chim. Acta 2009, 92, 967; (s) Sabitha, G.; Bhaskar, V.; Siva
Sankara Reddy, S.; Yadav, J. S. Helv. Chim. Acta 2010, 93, 329–338.
14. (a) Lorenz, K.; Frieder, L. W. Tetrahedron Lett. 1987, 28, 6437–6440; (b) Diaz-
Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Marco, A. J. Tetrahedron 2004, 60,
2979–2985; (c) Gao, D.; O’ Doherty, G. A. J. Org. Chem. 2004, 70, 9932–9939.
15. (a) Crispino, G. A.; Jeong, K. S.; Kolb, H. C.; Wang, Z. M.; Xu, D.; Sharpless, K. B. J.
Org. Chem. 1993, 58, 3785; (b) Ko, S. Y.; Malik, M. Tetrahedron Lett. 1993, 34,
4675; (c) Takano, S.; Yoshimitsu, T.; Ogasawara, K. J. Org. Chem. 1994, 59, 54;
(d) Vidari, G.; Giori, A.; Dapiaggi, A.; Lanfranchi, G. Tetrahedron Lett. 1993, 34,
6925.
In summary, we accomplished the stereoselective total synthe-
sis of (+)-anamarine via the CM protocol.
Acknowledgments
C.N.R. thanks UGC, and P.G. thanks CSIR, New Delhi for the
award of fellowships.
References and notes
1. Alemany, A.; Márquez, C.; Pascual, C.; Valverde, S.; Martínez-Ripoll, M.; Fayos,
J.; Perales, A. Tetrahedron Lett. 1979, 20, 3583–3586.
2. Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-García-Rojas, C. M. Tetrahedron
2001, 57, 47–53.
3. Achmad, S. A.; Høyer, T.; Kjær, A.; Makmur, L.; Norrestam, R. Acta Chem. Scand.
1987, 41B, 599–609.
4. Coleman, M. T. D.; English, R. B.; Rivett, D. E. A. Phytochemistry 1987, 26, 1497–
1499.
5. Collett, L. A.; Davies-Coleman, M. T.; Rivett, D. E. A. Phytochemistry 1998, 48,
651–656.
6. (a) Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-Garcia-Rojas, C. M.
Tetrahedron 2001, 57, 47–53; (b) Pereda-Miranda, R.; Hernandez, L.;
16. (a) Venkatesan, K.; Srinivasan, K. V. Tetrahedron: Asymmetry 2008, 19, 209–215;
(b) Keck, G. E.; Andrus, M. B.; Romer, D. R. J. Org. Chem. 1991, 56, 417–420.
17. Analytical data of all the new compounds are given below. (R)-5-(Benzyloxy)-4-
(methoxymethoxy)pent-2-yn-1-ol (15): ½a D25
¼ ꢀ79:6 (c 1, CHCl3); IR (KBr) 3426,
ꢁ
3030, 2929, 1452, 1027 cmꢀ1 1H NMR (300 MHz, CDCl3): d 7.34–7.27 (m, 5H,
;
ArH), 4.88 (d, J = 6.0 Hz, 1H,), 4.61 (d, J = 6.7 Hz, 1H), 4.59 (m, 1H), 4.53 (ABq,