C O M M U N I C A T I O N S
whereas addition of 10 µM H2O2 fails to generate a rod-forming
response after extended treatment (Figure 2a). Higher doses of H2O2
(100 or 500 µM) result in intense intracellular rod formation (Figure
2c and 2d). To our delight, loading the eGFP-cofilin cells with 200
µM Ac-CPG1 followed by irradiation with UV light triggers a rod
formation pattern that is strikingly similar in appearance to treatment
with the 50 µM H2O2 dose (Figure 2h), suggesting that CPG1-
derived H2O2 production in this context is on the order of tens of
micromolar. More importantly, control cells in the same imaging
dish that were not exposed to UV irradiation did not show H2O2-
induced coflin-actin rod patterns, highlighting the utility of CPG1
for delivering H2O2 within precise, spatially defined regions in the
same experiment (Figure 2i). In addition, control cells that are either
loaded with CPG1 and not activated with UV light or not loaded
with CPG1 and treated with UV excitation do not form rods (Figure
2f and 2g, respectively), establishing that the downstream phenotype
is due to controlled photoactivation of CPG1 to release the
molecular signal H2O2. As further evidence that photogeneration
of H2O2 from CPG1 and not a miscellaneous factor induces rod
formation, we treated cells loaded with a nitrobenzyl-protected
resorcinol compound. UV-irradiation releases the nonredox active
resorcinol along with the nitrosobenzaldehyde side product resulting
from photodeprotection. No rod formation was observed under
conditions identical to cells in Figure 2, confirming byproducts of
photodecaging do not contribute to rod formation (Figure S7).
Finally, analysis of the cellular morphology and corroboration by
MTT viability assay following experimental treatments confirm that
CPG1 is nontoxic to HeLa cells at concentrations up to 300 µM
(Figure S8).
for the eGFP-cofilin HeLa cell line. We dedicate this manuscript
to the memory of Dr. Gary Bokoch.
Supporting Information Available: Synthetic and experimental
details. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Winterbourn, C. Nat. Chem. Biol. 2008, 4, 278–286.
(2) Finkel, T.; Serrano, M.; Blasco, M. A. Nature 2007, 448, 767–774.
(3) Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. ReV. Drug DiscoVery 2004,
3, 205–214.
(4) Lambeth, J. D. Nat. ReV. Immunol. 2004, 4, 181–189.
(5) Rhee, S. G. Science 2006, 312, 1882–1883.
(6) D’Autreaux, B.; Toledano, M. B. Nat. ReV. Mol. Cell Biol. 2007, 8, 813–
824.
(7) Miller, E. W.; Chang, C. J. Curr. Opin. Chem. Biol. 2007, 11, 620–625.
(8) Poole, L. B.; Nelson, K. J. Curr. Opin. Chem. Biol. 2008, 12, 18–24.
(9) Paulsen, C. E.; Carroll, K. S. ACS Chem. Biol. 2010, 5, 47–62.
(10) Niethammer, P.; Grabher, C.; Look, A. T.; Mitchison, T. J. Nature 2009,
459, 996–999.
(11) Bao, L.; Avshalumov, M. V.; Patel, J. C.; Lee, C. R.; Miller, E. W.; Chang,
C. J.; Rice, M. E. J. Neurosci. 2009, 29, 9002–9010.
(12) Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem.
Soc. 2004, 126, 15392–15393.
(13) Miller, E. W.; Tulyathan, O.; Isacoff, E. Y.; Chang, C. J. Nat. Chem. Biol.
2007, 3, 263–267.
(14) Belousov, V. V.; Fradkov, A. F.; Lukyanov, K. A.; Staroverov, D. B.;
Shakhbazov, K. S.; Terskikh, A. V.; Lukyanov, S. Nat. Methods 2006, 3,
281–286.
(15) Lee, D.; Khaja, S.; Velasquez-Castano, J. C.; Dasari, M.; Sun, C.; Petros,
J.; Taylor, W. R.; Murthy, N. Nat. Mater. 2007, 6, 765–769.
(16) Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem.
Soc. 2008, 130, 4596–4597.
(17) Dickinson, B. C.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 9638–9639.
(18) Casanova, D.; Bouzigues, C.; Nguyeˆn, T.-L.; Ramodiharilafy, R. O.;
Bouzhir-Sima, L.; Gacoin, T.; Boilot, J.-P.; Tharaux, P.-L.; Alexandrou,
A. Nat. Nanotechnol. 2009, 4, 581–585.
(19) Srikun, D.; Albers, A. E.; Nam, C. I.; Iavarone, A. T.; Chang, C. J. J. Am.
Chem. Soc. 2010, 132, 4455–4465.
In summary, we have developed a new type of small-molecule
probe for on-demand delivery of H2O2 to living cells by photoac-
tivation. CPG1 is capable of generating physiologically relevant
µM bursts of H2O2 upon photolysis, and molecular imaging verifies
that this reagent can induce rises in intracellular H2O2 within live
biological specimens with precise temporal control. Furthermore,
CPG1 can be used to trigger and regulate downstream cellular
phenotypes via H2O2 signaling pathways in spatially defined patterns
of cells, as demonstrated by light-initiated cofilin-actin rod forma-
tion. The ability to rapidly and precisely deliver H2O2 to living
systems by a chemically orthogonal light stimulant offers new
opportunities for elucidating the functions of this transient small
molecule in heterogeneous biological samples as well as real-time
remote control of downstream cell behavior through H2O2-regulated
pathways.
(20) Jin, H.; Heller, D. A.; Kalbacova, M.; Kim, J.-H.; Zhang, J.; Boghossian,
A. A.; Maheshri, N.; Strano, M. S. Nat. Nanotechnol. 2010, 5, 302–309.
(21) Dickinson, B. C.; Huynh, C.; Chang, C. J. J. Am. Chem. Soc. 2010, 132,
5906–5915.
(22) Rothman, D. M.; Shults, M. D.; Imperiali, B. Trends Cell Biol. 2005, 15,
502–510.
(23) Marriott, G.; Mao, S.; Sakata, T.; Ran, J.; Jackson, D. K.; Petchprayoon,
C.; Gomez, T. J.; Warp, E.; Tulyathan, O.; Aaron, H. L.; Isacoff, E. Y.;
Yan, Y. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17789–17794.
(24) Lee, H. M.; Larson, D. R.; Lawrence, D. S. ACS Chem. Biol. 2009, 4,
409–427.
(25) Kaplan, J. H.; Somlyo, A. P. Trends Neurosci. 1989, 12, 54–59.
(26) Callaway, E. M.; Yuste, R. Curr. Opin. Neurobiol. 2002, 12, 587–592.
(27) Volgraf, M.; Gorostiza, P.; Szobota, S.; Helix, M. R.; Isacoff, E. Y.; Trauner,
D. J. Am. Chem. Soc. 2007, 129, 260–261.
(28) Matsuzaki, M.; Hayama, T.; Kasai, H.; Ellis-Davies, G. C. R. Nat. Chem.
Biol. 2010, 6, 255–257.
(29) Ellis-Davies, G. C. Chem. ReV. 2008, 108, 1603–1613.
(30) Ciesienski, K. L.; Haas, K. L.; Dickens, M. G.; Tesema, Y. T.; Franz, K. J.
J. Am. Chem. Soc. 2008, 130, 12246–12247.
(31) Bandara, H. M. D.; Kennedy, D. P.; Akin, E.; Incarvito, C. D.; Burdette,
S. C. Inorg. Chem. 2009, 48, 8445–8455.
(32) Nandy, S. K.; Agnes, R. S.; Lawrence, D. S. Org. Lett. 2007, 9, 2249–
2252.
Acknowledgment. We thank the Packard and Sloan Founda-
tions, the Hellman Faculty Fund (UC Berkeley), Amgen, Astra
Zeneca, Novartis, and the National Institutes of Health (GM 79465)
for providing funding for this work. C.J.C. is an Investigator with
the Howard Hughes Medical Institute. E.W.M. and C.S.O. were
partially supported by a Chemical Biology Training Grant from
the NIH (T32 GM066698). E.W.M. acknowledges a Stauffer
fellowship, C.S.O. acknowledges an NSF graduate fellowship, and
E.J.N. acknowledges an 1851 Royal Commission fellowship for
further support. We thank A. Fischer at the UC Berkeley Tissue
Culture Facility for expert technical assistance and Dr. T. Huang
(33) Ghosh, M.; Song, X.; Mouneimne, G.; Sidani, M.; Lawrence, D. S.;
Condeelis, J. S. Science 2004, 304, 743–746.
(34) Rothman, D. M.; Petersson, E. J.; Va´zquez, M. E.; Brandt, G. S.; Dougherty,
D. A.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 846–847.
(35) Clapp, P. A.; Du, N.; Evans, D. F. J. Chem. Soc., Faraday Trans. 1990,
86, 2587–2592.
(36) Kim, J. S.; Huang, T. Y.; Bokoch, G. M. Mol. Biol. Cell 2009, 20, 2650–
2660.
(37) Minamide, L. S.; Striegl, A. M.; Boyle, J. A.; Meberg, P. J.; Bamburg,
J. R. Nat. Cell Biol. 2000, 2, 628–636.
(38) Huang, T. Y.; Minamide, L. S.; Bamburg, J. R.; Bokoch, G. M. DeV. Cell
2008, 15, 691–703.
JA107783J
9
J. AM. CHEM. SOC. VOL. 132, NO. 48, 2010 17073