J. W. Steed et al.
CH2 L), 3.57 (m, 1H; CH2 L), 3.79 (m, 1H; CH2 L), 3.97 (m, 1H; CH2
L), 5.12 (br, s, 1H; CHAr), 5.24 (br, s, 1H; CHAr), 5.32 (br, s, 1H; CHAr),
5.38 (br, s, 1H; CHAr), 6.21 (br, s, 1H; NH), 7.41 (br, s, 1H; NH),
N
(100;
Ru
isotope
envelope);
519.0
[
102Ru(h6-
A
ACHTUNGTRENNUNG
ACHTUNGRTEN(NUNG H2O): C 47.50, H 4.68, 7.23;
3
9.22 ppm (br, s, 1H; NH); minor conformer: d=1.26, 1.27 (d, J=6.0 Hz,
6H; CH3 cym), 2.22 (s, 3H; CH3 L), 2.67 (s, 3H; CH3 L), 2.76 (sp, 3J=
6.0 Hz, 1H; CH cym), 3.00 (br, s, 3H; CH3 cym) 3.07 (m, 1H; CH2 L),
3.31 (m, 1H; CH2 L), 3.57 (m, 1H; CH2 L), 3.97 (m, 1H; CH2 L), 5.12
(br, s, 1H; CHAr), 5.24 (br, s, 1H; CHAr), 5.32 (br, s, 1H; CHAr), 5.42 (br,
s, 1 H; CHAr), 6.44 (br, s, 1H; NH), 8.14 (br, s, 1H; NH), 9.29 ppm (br, s,
1H; NH); {1H}13C NMR (CDCl3, 400 MHz): d=18.99, 22.60, 23.21, 27.99,
31.83, 45.48, 46.92, 81.11, 82.47, 97.54, 104.47, 177.16, 180.79 ppm; ESI-
[Pd
DPPE (92 mg, 0.23 mmol) were dissolved in dichloromethane (20 mL)
and stirred for 30 min to generate Pd(dppe)Cl2 in situ, then a solution of
(kS,S’-L3)]
ACTHUNGTERN(NNUG dppe)ACHTUNGTRNEUNG AHCTUNGRET(GNNNU PF6)2 (6a): PdACHTNGUTREN(UNNG MeCN)2Cl2 (60 mg, 0.23 mmol) and
AHCTUNGTRENNUNG
L3 (72 mg, 0.23 mmol) in acetone (20 mL) was added. The solution was
stirred for 5 H; then all solvent was removed in vacuo and the yellow
solid was washed with hexane to give the crude product (180 mg). This
crude product (90 mg) was dissolved in acetone/ethanol (50 mL; 1:1)
before NH4PF6 (200 mg, excess) was added and the mixture stirred over-
night. All solvent was then removed and the compound was extracted
into CDCl3 (2 mL) for NMR spectroscopy studies. After spectra had
been obtained, all solvent was removed from this solution to give a
yellow solid that was washed with diethyl ether (yield=101 mg,
0.09 mmol, 89% based on 90 mg crude solid used in metathesis).
1H NMR (CDCl3, 400 MHz): d=1.25 (br, s, 6H; CH3 L), 2.37 (br, s, 2H;
CH2 DPPE), 2.82 (br, s, 2H; CH2 dppe), 4.28 (br, s, 2H; CH L), 5.91 (br,
s, 2 H; CHAr), 6.39 (br, s, 2H; CHAr), 7.38, 7.47, 7.60 (br, s, 20H; CHAr
dppe), 7.82 (br, s, 2H; NH), 8.7 ppm (br, s, 2H; NH); {1H}13C NMR
(CDCl3, 101 MHz): d=21.13, 21.33, 29.88, 47.35, 127.63, 128.53, 128.64,
130.47, 131.67, 131.76, 131.86, 132.10, 132.81, 132.92, 175.07 ppm;
MS: 441.2 [102Ru(h6-C6H4MeCH(Me)2)
ACHTUNGTRENNUNG
lope); elemental analysis calcd (%) for RuC16H27N4S2Cl.H2O: C 38.89, H
5.92, N 11.34; found C 38.77, H 5.96, N 10.91.
[Ru(h6-C6H4MeCH(Me)2)(kS,S’,N-L4)]Cl2
(4):
[{Ru(h6-
C6H4MeCH(Me)2)Cl
ACHTUNGTRENNUNG
1.54 mmol) were dissolved in degassed CH2Cl2 (40 mL) and heated at
reflux under N2 for 6 h. Orange crystals were obtained after concentrat-
ing the resultant red solution and crystallised by adding a layer of diethyl
ether at 58C. Filtering and drying the crystals gave the pure product. Ad-
dition of water causes the formation of two isomers, the main one corre-
sponds to a symmetric species while the minor one is asymmetric and is
likely to arise from deprotonation (yield=178 mg, 0.33 mmol, 95%).
1H NMR (CDCl3, 700 MHz): d=1.23 (d, 3J=6.9 Hz, 6H; Me cym), 1.89
1
{1H}31P NMR (CDCl3, 162 MHz): d=61.64 (s, PPh2), À144.02 ppm (sp, J-
3
3
À
À
À
(s, 3H; Me cym), 2.74 (sp, J=6.9 Hz, 1H; CH cym), 3.31 (d, J=4.9 Hz,
ACHTUNGTREN(UNNG P,F)=715 Hz, PF6); IR: n˜ =3353 (br, N H), 3220 (br, N H), 1578 (s, N
3
3
H), 1243 (m, C=S), 1167 (m, C=S), 1104 (m, C=S), 840 cmÀ1 (vs, P F);
À
6H; Me), 5.53 (d, J=6.1 Hz, 2H; HAr cym), 5.66 (d, J=6.1 Hz, 2H; HAr
cym), 7.37 (d, J=8.0 Hz, 2H; Hpy), 7.67 (t, 3J=8.0 Hz, 1H; Hpy), 10.55
ESI-MS: m/z: 812.9 [106Pd
N
(L3ÀH)]+ (100; Pd isotope envelope);
3
(q, 3J=4.6 Hz, 2H; NH), 13.01 ppm (s, 2H; NH); {1H}13C NMR (CDCl3,
700 MHz): d=18.62 (Me’), 22.79 (Me’’), 30.91 (CH cym), 32.35 (Me), 88.32
(C3cym), 89.83 (C2cym), 105.88 (C4cym), 107.38 (C1cym), 112.79 (C3py), 142.38-
À
elemental analysis calcd (%) for PdC40H46N4S2P4F12: C 43.47, H 4.19, N
5.04; found: C 44.54, H 4.19, N 5.16.
[Pt
DPPE (114 mg, 0.29 mmol) were dissolved in CH2Cl2 (20 mL) to form Pt-
AHCTUNGTRENNUNG
(dppe)Cl2 in situ, then L3 (78 mg, 0.29 mmol) in ethanol (20 mL) was
(kS,S’-L3]
ACTHUNGTERN(NNUG dppe)ACHTUNGTERNNGU ACHTUNGETRN(GUNN PF6)2 (6b): PtACHTNGUTREN(UNGN MeCN)2Cl2 (100 mg, 0.29 mmol) and
ACHTUNGTRENNUNG
(C4py), 153.62 (C2py), 179.74 ppm (C=S); IR: n˜ =3167 (br, N H), 1621 (s,
À
N H), 1563 and 1545 (m, C=N), 1273 (m, C=S), 1180 (m, C=S),
1052 cmÀ1
C6H4MeCH(Me)2)L]2+
(m,
C=S);
265.5
ESI-MS:
m/z:
245.5
[
102Ru(h6-
(MeCN)]2+
;
added and the mixture was stirred for 2 h at RT. Then NH4PF6 (200 mg,
excess) in acetone (10 mL) was added and the mixture was stirred for a
further 1 h. All solvent was then removed in vacuo and the yellow solid
was washed with CH2Cl2. The organic fraction was dried in vacuo to give
,
[
102Ru(h6-C6H4MeCH(Me)2)L
U
elemental analysis calcd (%) for RuC19H27N5S2Cl2: C 40.64, H 4.85, N
12.47; found: C 40.43, H 4.76, N 12.28.
[Ru(h6-C6H4MeCH(Me)2)(kS,S’,Npy-L4)]
N
a
yellow solid (yield=140 mg, 0.12 mmol, 40%). 1H NMR (CDCl3,
0.11 mmol) was dissolved in degassed CH2Cl2 (10 mL) and AgBF4
(41.6 mg, 0.21 mmol) was added to produce a precipitation of AgCl. An
orange powder was obtained by filtration of the solution and removal of
the solvent by vacuum (yield=178 mg, 0.33 mmol, 97%). 1H NMR
(CDCl3, 400 MHz): d=1.26 (d, 3J=6.9 Hz, 6H; Me cym), 1.89 (s, 3H;
Me cym), 2.79 (sp, 3J=6.9 Hz, 1H; CH cym), 3.38 (br, s, 6H; Me), 5.74
200 MHz): d=1.20 (d, 3J=6.4 Hz, 6H; CH3), 1.28 (d, 3J=6.4 Hz, 6H;
CH3), 2.0 (br, s, 2H; CH2), 2.7 (br, s, 2H; CH2), 4.26 (q, 3J=6.4 Hz, 2H;
3
3
CH), 6.00 (d, J=4.6 Hz, 2H; CHAr), 6.41 (d, J=4.6 Hz, 2H; CHAr), 7.06
(br, s, 2H; NH), 7.4–7.6 (m, 20H; CHAr), 8.68 ppm (br, s, 2H; NH);
{1H}13C NMR (CDCl3, 101 MHz): d=21.22, 29.92, 47.68, 124.60, 125.20,
126.13, 126.74, 127.03, 127.34, 127.64, 128.51, 130.14, 131.44, 132.07,
132.89, 173.44 ppm; {1H}31P NMR (CDCl3, 121 Hz): d=45.87 (s with Pt
3
3
(d, J=6.1 Hz, 2H; HAr cym), 5.82 (d, J=6.1 Hz, 2H; HAr cym), 7.25 (d,
3J=8.0 Hz, 2H; Hpy), 7.77 (t, 3J=8.0 Hz, 1H; Hpy), 9.08 (br, s, 2H;
NH), 10.51 ppm (s, 2H; NH); 19F NMR (CDCl3, 400 MHz): d=
satellites, 1J
G
E
ACHTUNGTREN(NUNG P,F)=715 Hz,
À
PF6); IR: n˜ =3345 (br, N H stretch), 3246 (br, N H stretch), 1574 (s, NH
À149.06 ppm; IR: n˜ =3318 (br, N H), 1613 (s, N H), 1558 (m, C=N),
bend), 1166 (m, C=S stretch), 1105 (m, C=S stretch), 840 cmÀ1 (vs, P F);
À
À
À
1282 (m, C=S), 1185 (m, C=S), 1024 cmÀ1 (br, B F); elemental analysis
ESI-MS: m/z: 905.3 [195Pt
À
calcd (%) for RuC19H27N5S2B2F8: C 34.36, H 4.10, N 10.54; found: C
mental analysis calcd (%) for PtC40H46N4S2P4F12: C 40.24, H 3.88, N 4.69;
34.29, H 4.25, N 9.99.
found: C 40.14, H 3.98, N 5.03.
[Ru(h6-C6H4MeCH(Me)2)Cl(kS,Npy-L5)]Cl·2H2O
(5):
[{Ru(h6-
[Pd
0.19 mmol) and DPPE (77 mg, 0.19 mmol) in CH2Cl2 (20 mL) was stirred
for 30 min to generate Pd
(dppe)Cl2 in situ, then L1 (39 mg, 0.19 mmol) in
ACHTUNGTRNEU(GNN dppe)ACHTUNRTEGNNUNG ACHTNGUTREN(NGUN MeCN)2Cl2 (50 mg,
(kS,S’-L1)]Cl·PF6 (7): A solution of Pd
C6H4MeCH(Me)2)Cl
ACHTUNGTRENNUNG
0.25 mmol) were heated at reflux under N2 in degassed CHCl3 for 3 h.
All solvent was then removed in vacuo to give a dark orange solid
(yield=124 mg, 0.21 mmol, 84%). 1H NMR (CDCl3, 400 MHz): d=1.13
ACHTUNGTRENNUNG
ethanol (20 mL) was added. This mixture was stirred for 1 h before an
excess of NH4PF6 (120 mg) in ethanol (20 mL) was added and the mix-
ture was stirred for a further 30 min. All solvent was then removed and
the compound was extracted into chloroform (20 mL). The solvent was
removed from this solution to give a yellow solid that was washed with
diethyl ether (yield=142 mg, 0.16 mmol, 84%). 1H NMR (CD3CN,
400 MHz): d=2.65 (br, s, 6H; CH3), 2.72 (br, s, 4H; CH2), 3.32 (br, s,
2H; CH2), 3.43 (br, s, 2H; CH2), 6.83 (br, s, 2H; NH), 7.58 (br, s, 8H;
CHAr), 7.67 (br, s, 4H; CHAr), 7.80 (br, s, 8H; CHAr), 8.26 ppm (br, s,
3
3
(d, J=4.4 Hz, 3H; CH3 cym), 1.15 (d, J=4.4 Hz, 3H; CH3 cym), 1.87 (s,
3
3H; CH3), 2.32 (s, 3H; CH3), 2.71 (m, 1H; CH, cym), 5.22 (d, J=6.0 Hz,
1H; CHAr, cym), 5.24 (d, 3J=6.0 Hz, 1H; CHAr, cym), 5.38 (d, 3J=
6.0 Hz, 1H; CHAr, cym), 5.46 (d, 3J=6.0 Hz, 1H; CHAr, cym), 7.13, (d,
3J=6.8 Hz, 1H; CHAr, pyridyl), 7.17 (d, 3J=8.4 Hz, 2H; CHAr, tolyl),
3
7.41 (d, J=8.4 Hz, 2H; CHAr, tolyl), 7.56 (d, 3J=6.8 Hz, 1H; CHAr, pyr-
idyl), 7.73 (t, 3J=6.8 Hz, 1H; CHAr, pyridyl), 8.83 (d, 3J=6.8 Hz, 1H;
CHAr, pyridyl), 11.95 (br, s, 1H; NH), 13.11 ppm (br, s, 1H; NH);
{1H}13C NMR (CDCl3, 101 MHz): d=17.19, 20.21, 21.29, 21.39, 29.69,
83.40, 84.05, 84.24, 85.76, 99.16, 105.96, 116.13, 120.32, 124.14, 128.70,
132.91, 136.87, 139.241, 152.00, 153.76, 176.79 ppm; IR (NH peaks ob-
2H; NH); {1H}31P NMR (CDCl3, 162 MHz): d=À136.2 (sept., 1J
ACHTUNGTRENNUNG(P,F)=
715 Hz, PF6), 67.9 ppm (s, PPh2); IR: 3385 (br), 3241 (br), 1588 (s), 1229
(m, C=S), 1188 (m, C=S), 1104 (m, C=S), 840 cmÀ1 (vs, P F); ESI-MS
À
(MeCN): m/z: 709.1 [106Pd
(dppe)
R
À
scured by H2O peak): n˜ =1628 (s, N H), 1219 (m, C=S), 1160 (m, C=S),
elemental analysis calcd (%) for PdC32H38N4S2P3F6Cl: C 43.11, H 4.30, N
6.28; found: C 43.39, H 4.00, N 3.82.
1057 cmÀ1 (m, C=S); ESI-MS: m/z: 478.0 [102Ru(h6-C6H4MeCH(Me)2)-
10828
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2010, 16, 10818 – 10831