Organic Letters
Letter
1
crystallography data, H and 13C NMR data for sulfate
Absolute Configuration for erythro and threo Diols, Amino Alcohols,
and Diamines. J. Am. Chem. Soc. 2008, 130, 1885−1893. (g) Li, X.;
Borhan, B. Prompt Determination of Absolute Configuration for
Epoxy Alcohols via Exciton Chirality Protocol. J. Am. Chem. Soc.
2008, 130, 16126−16127. (h) Li, X.; Burrell, C. E.; Staples, R. J.;
Borhan, B. Absolute Configuration for 1,n-Glycols: A Nonemperical
Approach to Long-Range Stereochemical Determination. J. Am. Chem.
Soc. 2012, 134, 9026−9029. (i) Anyika, M.; Gholami, H.; Ashtekar, K.
D.; Acho, R.; Borhan, B. Point-to-Axial Chirality Transfer-A New
Probe for “Sensing” the Absolute Configurations of Monoamines. J.
Am. Chem. Soc. 2014, 136, 550−553. (j) Zhang, J.; Gholami, H.;
Ding, X.; Chun, M.; Vasileiou, C.; Nehira, T.; Borhan, B.
Computationally Aided Absolute Stereochemical Determination of
Enantioenriched Amines. Org. Lett. 2017, 19, 1362−1365. (k) Gho-
lami, H.; Anyika, M.; Zhang, J.; Vasileiou, C.; Borhan, B. Host-Guest
Assembly of a Molecular Reported with Chiral Cyanohydrins for
Assignment of Absolute Stereochemistry. Chem. - Eur. J. 2016, 22,
9235−9239. (l) Gholami, H.; Zhang, J.; Anyika, M.; Borhan, B.
Absolute Stereochemical Determination of Asymmetric Sulfoxides via
Central to Axial Induction of Chirality. Org. Lett. 2017, 19, 1722−
1725.
pyridinium complexes (PDF)
Accession Codes
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
(4) (a) Wagner, A. J.; David, J. G.; Rychnovsky, S. D. Determination
of Absolute Configuration Using Kinetic Resolution Catalysts. Org.
Lett. 2011, 13, 4470−4473. (b) Miller, S. M.; Samame, R. A.;
Rychnovsky, S. D. Nanomole-Scale Assignment of Configuration for
Primary Amines Using a Kinetic Resolution Strategy. J. Am. Chem.
Soc. 2012, 134, 20318−20321. (c) Burtea, A.; Rychnovsky, S. D.
Determination of the Absolute Configuration of Cyclic Amines with
Bode’s Chiral Hydroxamic Esters Using Competing Enantioselective
Conversion Method. Org. Lett. 2017, 19, 4195−4198. (d) Perry, M.
A.; Trinidad, J. V.; Rychnovsky, S. D. Absolute Configuration of
Lactams and Oxazolidinones Using Kinetic Resolution Catalysts. Org.
Lett. 2013, 15, 472−475. (e) Wagner, A. J.; Rychnovsky, S. D.
Determination of Absolute Configuration of Secondary Alcohols
Using Thin-Layer Chromatography. J. Org. Chem. 2013, 78, 4594−
4598. (f) Wagner, A. J.; Miller, S. M.; King, R. P.; Rychnovsky, S. D.
Nanomole-Scale Assignment and One-Use Kits for Determining the
Absolute Configuration of Secondary Alcohols. J. Org. Chem. 2016,
81, 6253−6265. (g) Burns, A. S.; Wagner, A. J.; Fulton, J. L.; Young,
K.; Zakarian, A.; Rychnovsky, S. D. Determination of the Absolute
Configuration of beta-Chiral Primary Alcohols Using the Competing
Enantioselective Conversion Method. Org. Lett. 2017, 19, 2953−
2956. (h) Burns, A. S.; Ross, C. C.; Rychnovsky, S. D. Heteroatom-
Directed Acylation of Secondary Alcohols to Assign Absolute
Configuration. J. Org. Chem. 2018, 83, 2504−2515.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We are grateful to the Tobey Beaudrot Endowment (Clemson
University) for partial support of this work.
■
REFERENCES
■
(1) Allenmark, S.; Gawronski, J. Determination of Absolute
Configuration: An Overview. Chirality 2008, 20, 606−608.
(2) (a) Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy:
Exciton Coupling in Organic Chemistry; University Science Book:
Saisalito, CA, USA, 1983; p 460. (b) Berova, N.; Bari, L.; Pescitelli, G.
Application of Electronic Circular Dichroism in Configurational and
Conformational Analysis of Organic Compounds. Chem. Soc. Rev.
2007, 36, 914−931. (c) Stephens, P. J.; Devlin, F. J.; Pan, J.-J. The
determination of the absolute configurations of chiral molecules using
vibrational circular dichroism (VCD) spectroscopy. Chirality 2008,
20, 643−663. (d) Polavarapu, P. L. Determination of the Absolute
Configurations of Chiral Drugs Using Chiroptical Spectroscopy.
Molecules 2016, 21, 1056−1072. (e) McConnell, O.; Bach, A.; Balibar,
C.; Byrne, N.; Cai, Y.; Carter, G.; Chlenov, M.; Di, L.; Fan, K.; Goljer,
I.; He, Y.; Herold, D.; Kagan, M.; Kerns, E.; Koehn, F.; Kraml, C.;
Marathias, V.; Marquez, B.; McDonald, L.; Nogle, L.; Petucci, C.;
Schlingmann, G.; Tawa; Tischler, M.; Williamson, R. T.; Sutherland,
A.; Watts, W.; Yound, M.; Zhangm, M.; Zhang, Y.; Zhou, D.; Ho, D.
Enantiomeric Separation and Determination of Absolute Stereo-
chemistry of Asymmetric Molecules in Drug Discovery-Building
Chiral Technology Toolboxes. Chirality 2007, 19, 658−682.
(f) Freedman, T. B.; Cao, X.; Dukor, R. K.; Nafie, L. A. Absolute
Configuration Determination of Chiral Molecules in the Solution
Using Vibrational Circular Dichroism. Chirality 2003, 15, 743−758.
(3) (a) Yang, Q.; Olmsted, C.; Borhan, B. Absolute Stereochemical
Determination of Chiral Carboxylic Acids. Org. Lett. 2002, 4, 3423−
3426. (b) Tanasova, M.; Yang, Q.; Olmsted, C. C.; Vasileiou, C.; Li,
X.; Anyika, M.; Borhan, B. An Unusual Conformation of
alphaHaloamides Due to Cooperative Binding with Zincated
Porphyrins. Eur. J. Org. Chem. 2009, 2009, 4242−4253. (c) Tanasova,
M.; Borhan, B. Conformational Preference in Bis(porphyrin) Tweezer
Complexes: A Versatile Chirality Sensor for alpha-Chiral Carboxylic
Acids. Eur. J. Org. Chem. 2012, 2012, 3261−3269. (d) Tanasova, M.;
Anyika, M.; Borhan, B. Sensing Remote Chirality: Ster oechemical
Determination of beta, gamma, and delta- Chiral Carboxylic Acids.
Angew. Chem., Int. Ed. 2015, 54, 4274−4278. (e) Zhang, J.; Sheng,
W.; Gholami, H.; Nehira, T.; Borhan, B. Di(1-napthyl) Methanol
Ester of Carboxylic Acids for Absolute Stereochemical Determination.
Chirality 2018, 30, 141−146. (f) Li, X.; Tanasova, M.; Vasileiou, C.;
Borhan, B. Fluorinated Porphyrin Tweezer: A Powerful Reported of
́
̃
(5) (a) Seco, J. M.; Quinoa, E.; Riguera, R. The assignment of
Absolute Configuration by NMR. Chem. Rev. 2004, 104, 17−118.
́
(b) Seco, J. M.; Quinoa, E.; Riguera, R. Assignment of the Absolute
̃
Configuration of Polyfunctional Compounds by NMR Using Chiral
Derivatizing Agents. Chem. Rev. 2012, 112, 4603−4641. (c) Wenzel,
T.; Chisholm, C. D. Assignment of Absolute Configuration Using
Chiral Reagents and NMR Spectroscopy. Chirality 2011, 23, 190−
214. (d) Kwan, E. E.; Huang, S. G. Structural Elucidation with NMR
Spectroscopy: Practical Strategies for Organic Chemists. Eur. J. Org.
Chem. 2008, 2008, 2671−2688. (e) Kriegelstein, M.; Profous, D.;
̌
́
̌
̌
́
́
̌
Lycka, A.; Travnícek, Z.; Pribylka, A.; Volna, T.; Benicka, S.; Cankar,
P. Axially Chiral Trifluormethylbenzimidazolylbenzoix Acid: A chiral
Derivatizing Agent for α-Chiral Primary Amines and Secondary
Alcohols To Determine the Absolute Configuration. J. Org. Chem.
2019, 84, 11911−11921.
(6) (a) Peerdeman, A. F.; Bijvoet, J. M. The Indexing of Reflexions
in Investigations Involving the Use of the Anomalous Scattering
Effect. Acta Crystallogr. 1956, 9, 1012. (b) Flack, H. D.; Bernardinelli,
G. J. Reporting and Evaluating Absolute-Structure and Absolute-
Configurations Determinations. J. Appl. Crystallogr. 2000, 33, 1143−
1148. (c) Rameshan, S., Abrahams, S. C., Eds. Anomalous Scattering;
Munksgaard: Copenhagen, 1975. (d) Parsons, S. Determination of
Absolute Configuration using X-Ray Diffraction. Tetrahedron:
Asymmetry 2017, 28, 1304−1313. (e) Flack, H. D.; Bernardinelli,
E
Org. Lett. XXXX, XXX, XXX−XXX