6092 Organometallics 2010, 29, 6092–6096
DOI: 10.1021/om1007677
Alkyne-Functionalized Zirconocene Complexes:
Synthesis, Structures, and Reactivities
Minxiong Li,† Haibin Song,† Shansheng Xu,† and Baiquan Wang*,†,‡
†State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University,
Tianjin 300071, People’s Republic of China, and ‡State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032,
People’s Republic of China
Received August 7, 2010
Reactions of (phenylethynyl)lithium with substituted cyclopentenones gave the corresponding phe-
nylethynyl-substituted cyclopentadienes 1,2-R2-4-(PhCtC)C5H2 (R=Me (1a), Ph (1b)), which under-
went subsequent deprotonation and transmetalation with ZrCl4 to yield the corresponding alkyne-
functionalized zirconocene complexes {η5-[1,2-R2-4-(PhCtC)C5H2]}2ZrCl2 (R=Me (2a), Ph (2b)).
Thermal treatment of 2a,b with Ru3(CO)12 in refluxing benzene afforded the trinuclear complexes
(3,4-R2C5H2)2(μ3-C4Ph2)Ru3(CO)6(μ-CO)2 (R=Me (3a), Ph (3b)) and the dinuclear complex (3,4-
Ph2C5H2)2( μ-C4Ph2)Ru2(CO)5(μ-CO) (3c), via the unexpected cleavage of the two Cp0-Zr
bonds. The crystal structures of 2b and 3a,c were determined by X-ray diffraction.
Scheme 1
Cyclopentadienyl ligands with one or more alkyne groups
as the ring substituents or side chain functional groups have
been extensively used to synthesize alkyne-functionalized
cyclopentadienyl transition-metal complexes.1-5 The alkyne
group in these complexes acts not only as a donor of two π
electrons to coordinate with the Lewis acidic metal center2
but also as a reactive group to undergo further reaction.3,4
For double-alkyne-functionalized metallocene complexes, some
metal carbonyl complexes and other reagents can couple the two
*To whom correspondence should be addressed. Fax: þ86-22-
23504781. E-mail: bqwang@nankai.edu.cn.
(1) (a) Bunel, E. E.; Valle, L.; Jones, N. L.; Carroll, P. J.; Gonzalez,
M.; Munoz, N.; Manrlquez, J. M. Organometallics 1988, 7, 789. (b) Bunz,
U. H. F.; Enkelmann, V.; Beer, F. Organometallics 1995, 14, 2490. (c) Bunz,
U. H. F. Pure Appl. Chem. 1996, 68, 309. (d) Fabian, K. H. H.; Lindner,
H.-J.; Nimmerfroh, N.; Hafner, K. Angew. Chem., Int. Ed. 2001, 40, 3402.
(e) Sato, M.; Kubota, Y.; Kawata, Y.; Fujihara, T.; Unoura, K.; Oyama, A.
Chem. Eur. J. 2006, 12, 2282.
(2) (a) Buzinkai, J. F.; Schrock, R. R. Inorg. Chem. 1989, 28, 2831.
(b) Baker, M. V.; Brayshaw, S. K. Organometallics 2004, 23, 3749.
(3) (a) Onitsuka, K.; Miyaji, K.; Adachi, T.; Yoshida, T.; Sonogashira,
K. Chem. Lett. 1994, 23, 2279. (b) Onitsuka, K.; Katayama, H.;
Sonogashira, K.; Ozawa, F. J. Chem. Soc., Chem. Commun. 1995, 2267.
(c) Pudelski, J. K.; Callstrom, M. R. Organometallics 1994, 13, 3095.
alkyne groups to form distinct bridged metallocene complexes.3
For example, reactions of 1,10-dialkynylferrocene with Ru3-
(CO)12, KOH, and ArOH yielded metallacycles or [4]-
ferrocenophanes.3a-d Up to now, alkyne-functionalized cyclo-
pentadienyl transition-metal complexes have mainly focused
on ferrocene and ruthenocene derivatives; other metal com-
plexes with an alkyne-functionalized cyclopentadienyl ligand
are very limited. Recently, the alkynyl-substituted zirconocene
complexes bis(2-phenylethynylindenyl)zirconium dichloride
and bis[2-(prop-1-ynyl)indenyl]zirconium dichloride have been
synthesized.5f They reacted with Co2(CO)8 to form the corre-
sponding heteronuclear (alkyne)Co2(CO)6 complexes. In this
work, we will report the synthesis and structures of two new
alkyne-functionalized zirconocene complexes. Their reactions
with Ru3(CO)12 were also studied, and the Cp0-Zr bond
cleavage products were obtained.
€
(d) Ma, J.; K€uhn, B.; Hackl, T.; Butenschon, H. Chem. Eur. J. 2010, 16,
1859.
(4) (a) Onitsuka, K.; Tao, X. Q.; Wang, W. Q.; Otsuka, Y.; Sonogashira,
K. J. Organomet. Chem. 1994, 473, 195. (b) McAdam, C. J.; Brunton, J. J.;
Robinson, B. H.; Simpson, J. J. Chem. Soc., Dalton Trans. 1999, 2487.
(c) Scholz, G.; Gleiter, R.; Rominger, F. Angew. Chem., Int. Ed. 2001, 40,
2477. (d) Champeil, E.; Draper, S. M. Dalton Trans. 2001, 1440. (e) Scholz,
G.; Schaefer, C.; Rominger, F.; Gleiter, R. Org. Lett. 2002, 4, 2889. (f) Jiao,
J.; Long, G. J.; Rebbouh, L.; Grandjean, F.; Beatty, A. M.; Fehlner, T. P.
J. Am. Chem. Soc. 2005, 127, 17819. (g) Laus, G.; Schottenberger, H.; Lukasser,
J.; Wurst, K.; Sch€utz, J.; Ongania, K.-H.; Zsolnai, L. J. Organomet. Chem. 2005,
690, 691. (h) Mathur, P.; Chatterjee, S.; Das, A.; Mobin, S. M. J. Organomet.
Chem. 2007, 692, 819.
(5) (a) Peifer, B.; Milius, W.; Alt, H. G. J. Organomet. Chem. 1998,
553, 205. (b) Reybuck, S. E.; Meyer, A.; Waymouth, R. M. Macromolecules
2002, 35, 637. (c) Licht, A. I.; Alt, H. G. J. Organomet. Chem. 2003, 684, 91.
Results and Discussion
€
(d) Gorl, C.; Alt, H. G. J. Organomet. Chem. 2007, 692, 5727. (e) Ivchenko,
Following the synthetic route reported previously by the
Waymouth group,5b the two new ligand precursors 1a,b were
P. V.; Nifant'ev, I. E.; Mkoyan, S. G. Russ. Chem. Bull. 2007, 56, 70.
(f) Chen, L.; Kehr, G.; Frohlich, R.; Erker, G. Eur. J. Inorg. Chem. 2008, 73.
€
r
pubs.acs.org/Organometallics
Published on Web 10/27/2010
2010 American Chemical Society