P. SUBRAMANIAM, J. JANET SYLVIA JABA ROSE AND R. JEEVI ESTHER RATHINAKUMARI
Equations 12 and 13 have been successfully applied to a vari-
Acknowledgements
ety of inorganic, organic and organometallic and biochemical ET
reactions that have a wide range of structural types including
hetero atom substituted aromatics. In the above equations, K12
and z are the equilibrium constant for the cross reaction and
collision frequency for the uncharged reactant molecules in
solution respectively. The value of z is the pre exponential
JJSR thanks the UGC, SERO, Hyderabad (ETFTNMS137), the Man-
agement of Nazareth Margoschis College and Manonmaniam
Sundaranar University for the award of a fellowship under FDP.
The authors gratefully thank the Management, Aditanar College
of Arts and Science, Tiruchendur for providing Laboratory facili-
ties to do the research.
factor which is often taken as 1 × 1011 ꢀ1sꢀ1. The value of
m
self-exchange rate (k11) of [Fe(NN)3]3+/[Fe(NN)3]2+ couple is
taken from the previous studies of Sutin and co-workers[63] as
3.3 × 108 Mꢀ1 sꢀ1. The value of K12 is calculated from the redox
potential of the couples [Fe(NN)3]3+ / [Fe(NN)3]2+ and iSO•+/iSO
using the following equations
REFERENCES
[1] S. C. Sahu, Environ. Carcino. & Ecotox. Revs. 2002, C 20, 61–76.
[2] R. S. Rivlin, Historical perspective on the use of garlic. J. Nutr. 2001,
131, 951S–954S.
[3] A. M. I. Jeyaseeli, S. Rajagopal, J. Mol. Cat. A: Chemical. 2009,
ꢀ
ꢁ
309, 103–110.
K12 ¼ exp ꢀΔGO =RT
(14)
[4] D. Thenraja, P. Subramaniam, C. Srinivasan, Tetrahedron 2002,
58, 4283–4290.
[5] R. Suthakaran, S. Rajagopal, C. Srinivasan, Tetrahedron 2001,
57, 1369–1374.
where
[6] K. J. Adaikalasamy, N. S. Venkataramanan, S. Rajagopal, Tetrahedron.
2003, 59, 3613–3619.
[7] D. L. Bai, X. C. Tang, X. C. He, Curr. Top. Med. Chem. 2000, 7, 355–374.
[8] A. B. V. Kiran Kumar, K. S. V. Krishna Rao, M. Subhosh Chandra, M. C.
S. Subha, J. Yong Lark Choi, Korean Soc. Appl. Biol. Chem. 2009,
52(1), 34–39.
ꢀ
ꢁ
ΔGo ¼ nF EoS•þ
ꢀ EoFe3þ
:
(15)
=Fe2þ
O=SO
[9] S. Fukuzumi, I. Nakanishi, K. Tanak, T. Suenobu, A. Tabard, R. Guilard,
E. V. Caemelbecke, K. M. Kadish, J. Am. Chem. Soc. 1999,
121, 785–790.
The value of k22 for iSO•+/iSO couple can be determined from
an iterative procedure, i.e. a value of k22 is guessed and plugged
into Eqn 12 to calculate f. A plot of log k12 – 0.5 (log k11 – log f12)
versus log K12 is made, and from mean least-square calculations,
the intercept and slope of such plots are determined. From the
intercept a new estimated value of k22 is obtained, and this is
then used to calculate a new log f. The entire iterative process
was repeated until successive estimates of k22 differed by
less than 10%. The final result gives k22 = 1.3 × 107 Mꢀ1 sꢀ1 for
Fe(III) complexes as oxidant. It is pertinent to point out
that similar treatment of the oxidation of organic sulfoxides with
[Fe(NN)3]3+ has given the same value of k22. The value of k22 is
then used to get the rate constant for ET (k12) from PSAA to
[10] I. Hamachi, S. Tsukiji, S. Shinkai, S. Oishi, J. Am. Chem. Soc. 1999, 121,
5500–5506.
[11] I. Batinic-Haberle, I. Spasojevic, P. Hambright, L. Benov, A. L. Crumbliss,
I. Fridovich, Inorg. Chem. 1999, 38, 4011–4022.
[12] J. Chen, Z. Luo, Z. Zhao, L. Xie, W. Zheng, T. Chen, Biomaterials 2015,
71, 168–177.
[13] P. Balakumar, S. Balakumar, P. Subramaniam, Reac. Kinet. Mech. Cat.
2012, 107, 253–261.
[14] S. Balakumar, P. Thanasekaran, E. Rajkumar, K. J. Adaikalasamy, S.
Rajagopal, R. Ramaraj, T. Rajendran, B. Manimaran, K.-L. Lu, Org.
Biomol.Chem. 2006, 4, 352–358.
[15] T. V. N. P. Sarathi, A. K. Kumar, K. K. Kishore, P. Vani, J. Chem. Sci.
2005, 117, 329–332.
[16] P. Vani, K. K. Kishore, R. Rambabu, L. S. A. Dikshitulu, Proc. Indian.
Acad. Sci. (Chem. Sci). 2001, 113, 351–359.
[17] S. Deepalakshmi, A. Sivalingam, T. Kannadasan, P. Subramaniam, P.
Sivakumar, S. T. Brahadeesh, Spectrochim. Acta, A: Mol. Biomol.
Spectrosc. 2014, 124, 315–321.
[18] P. Subramaniam, N. Thamil Selvi, Am. J. Anal. Chem. 2013, 4, 20–29.
[19] P. Subramaniam, N. Thamil Selvi, S. Sugirtha Devi, S. J. Korean Chem,
Soc. 2014, 58, 17–24.
[Fe(bpy)3]3+ and [Fe(phen)3]3+
.
The calculated values,
12.3 × 10ꢀ4 sꢀ1 and 19.4 × 10ꢀ4 sꢀ1 are in fair agreement with
the experimental values 3.43 × 10ꢀ4 sꢀ1 and 3.24 × 10ꢀ4 sꢀ1. In
order to account for the dynamics of ET reactions it is essential
to include the solvation energy in the calculation. Thus we pre-
sume that if the solvation energy had been included, the agree-
ment between the experimental and calculated values would
have been better. The fair agreement between the experimental
and calculated rate constant values confirms the involvement of
[20] P. Subramaniam, S. Sugirtha Devi, S. Anbarasan, J. Mol. Cat. A: Chem-
ical. 2014, 390, 159–168.
[21] P. Subramaniam, N. Thamil Selvi, J. Serb. Chem. Soc. 2015,
80, 1019–1034.
[22] S. Balakumar, P. Thanasekaran, S. Rajagopal, R. Ramaraj, Tetrahedron.
single electron transfer from PSAA to [Fe(NN)3]3+
.
1995, 51, 4801–4818.
[23] C. Srinivasan, P. Subramaniam, J. Chem. Soc.Perkin Trans. 1990,
2, 1061–1279.
CONCLUSIONS
[24] R. D. Gillard, Coord. Chem. Rev. 1975, 16, 67–94.
[25] S. Burchett, C. E. Meloan, J. Inorg. Nucl. Chem. 1972, 34, 1207–1213.
[26] R. Schmid, L. Han, Inorg. Chim. Acta. 1983, 69, 127–134.
[27] M. H. Hey, Mineral Mag. 1982, 46, 111–118.
[28] M. H. Hey, Mineral Mag. 1982, 46, 512–513.
[29] S. Premsingh, N. S. Venkataramanan, S. Rajagopal, S. P. Mirza,
M. Vairamani, P. Rao, K. Velavan, Inorg. Chem. 2004, 43, 5744–5753.
[30] E. Baciocchi, D. Intini, A. Piermattei, C. Roh, R. Ruzziconi, Gazz. Chim.
Ital. 1989, 119, 649.
[31] C. G. Swain, W. P. Langsdorf, J. Am. Chem. Soc. 1951, 73, 2813–2819.
[32] J. Arias, C. R. Newlands, M. M. Abu-Omar, Inorg. Chem. 2001,
40, 2185–2192.
[33] F. Ruff, A. Kucsman, J. Chem. Soc. Perkin Trans. 1975, 2, 509–519.
[34] F. Ruff, A. Komoto, N. Furukawa, S. Oae, Tetrahedron 1976,
32, 2763–2767.
The electron transfer between substituted PSAAs and iron(III)
polypyridyl complexes was studied in aqueous acetonitrile me-
dium. PSAAs were converted to diphenyl disulfones as products.
The effect of acid concentration, ionic strength and solvent
variation on the rate of ET was studied. The observed substituent
effect and non-linear Hammett behaviour with upward curvature
are explained based upon the change in the rate determining
step in the mechanism from electron transfer to nucleophilic
attack of water upon changing the substitutes in PSAA. A satis-
factory mechanism incorporating all the effects was proposed.
Marcus relation has been successfully applied.
wileyonlinelibrary.com/journal/poc
Copyright © 2016 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. (2016)