energies)13 and is capable of transforming a p-type organic
materials. In this contribution, we explore the synthesis of
DCFs, their chemical stabilities, and their optical and
electrochemical properties.
system into an electron-accepting material.14
Cyclopentadienones (CPDs) and fulvenes have received little
attention as n-type building blocks and have only been
considered indirectly, as structural subunits in indenofluorenone
and indenofluorene bis(dicyanovinylene) chromophores.11a,b
Wudl et al. reported a donor-acceptor polymer containing
a dithienylcyclopentadienone moiety in its repeat unit, where
the CPD served as the “acceptor” component;15 however,
this polymer displayed complex electrochemistry and did not
demonstrate n-type behavior in an OFET. The paucity of
CPD- or fulvene-based building blocks could also be
attributed to the reactivity and instability of these classes of
molecules: many CPDs are unisolable in their monomeric
form16 (see Figure 1A), and the electrochemical stability of
fulvenes is suspect.17
Informed by the instability of monomeric cyclopentadi-
enone, we first synthesized a diphenyl derivative of 6,6-
dicyanofulvene based on the hypothesis that two phenyl
substituents would provide enough steric protection from
dimerization. 2,3-Diphenyl-6,6-dicyanofulvene (DCF1a) was
synthesized in two steps from the 4-hydroxy-2-cyclopenten-
1-one derivative 1 (Scheme 1), which was prepared by an
aldol condendation between acetone and benzil.18 Acid-
catalyzed dehydration of 1 generates the corresponding
cyclopentadienone 2a, which either irreversibly undergoes
a [4 + 2] homodimerization16 or can be trapped by suitable
dienophiles to generate 1,2-diphenylbenzene derivatives after
decarbonylation.18 To avoid such undesirable side reactions,
only transformations of the masked cyclopentadienone 1 were
pursued. The 1,2-addition of malononitrile to compound 1
proceeded smoothly to yield 3. We initially aniticipated the
occurrence of a number of detrimental rearrangement reac-
tions competing with the 1,2-addition of malononitrile;
however, as supported by the crystal structure of 3 (Figure
2A), the desired product was the sole isolated compound.
Dehydration of 3 by a catalytic amount of PTSA at elevated
temperatures quantitatively generated a dark brown solution
of DCF1a; however, this dicyanofulvene was found to
dimerize at room temperature to DCF1b. As seen in the
crystal structure of dimer DCF1b (Figure 2B), the endo
adduct was the major isolated product.
Figure 1. (A) Structures of the unisolable cyclopentadienone, CPD,
and its isolable dimer, (CPD)2. (B) Structure of 6,6-dicyanofulvene
(DCF), depicting the numbering convention for a fulvene skeleton.
We propose, instead, the use of 6,6-dicyanofulvenes
(DCFs, Figure 1B) as building blocks for electron-transport
Scheme 1. Synthesis of Select 6,6-Dicyanofulvene Derivatives
(6) (a) Oriz, R. P.; Herrera, H.; Blanco, R.; Huang, H.; Facchetti, A.;
Marks, T. J.; Zheng, Y.; Segura, J. L. J. Am. Chem. Soc. 2010, 132, 8440.
(b) Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.;
Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679. (c) Gao, X.; Di, C.; Hu,
Y.; Yang, X.; Fan, H.; Zhang, F.; Liu, Y.; Li, H.; Zhu, D. J. Am. Chem.
Soc. 2010, 132, 3697. (d) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc,
C.; Seigrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A. Nature 2000, 404,
478. (e) Schmidt, R.; Ling, M. M.; Oh, J. H.; Winkler, M.; Ko¨nemann, M.;
Bao, Z.; Wu¨rthner, F. AdV. Mater. 2007, 19, 3692. (f) Babel, A.; Jenekhe,
S. A. J. Am. Chem. Soc. 2003, 125, 13656.
(7) Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc. 1998, 120,
207.
(8) (a) Facchetti, A.; Letizia, J.; Yoon, M.-H.; Mushrush, M.; Katz, H.;
Marks, T. J. Chem. Mater. 2004, 16, 4715. (b) Facchetti, A.; Mushrush,
M.; Yoon, M.-H.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am.
Chem. Soc. 2004, 126, 13859.
(9) (a) Haddon, R. C.; Perel, A. S.; Morris, R. C.; Palstra, T. T. M.;
Hebard, A. F.; Fleming, R. M. Appl. Phys. Lett. 1995, 67, 121. (b)
Kobayashi, S.; Takenobu, T.; Mori, S.; Fujiwara, A.; Iwasa, Y. Appl. Phys.
Lett. 2003, 82, 4581. (c) Meijer, E. J.; De Leeuw, D. M.; Setayesh, S.; van
Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf,
U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678.
Dimerization was reversible and was accompanied by
(10) Izuhara, D.; Swager, T. M. J. Am. Chem. Soc. 2009, 131, 17724.
(11) (a) Usta, H.; Facchetti, A.; Marks, T. J. Org. Lett. 2008, 10, 1385.
(b) Usta, H.; Fachetti, A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 8580.
(c) Handa, S.; Miyazaki, E.; Takiyama, K.; Kunugi, Y. J. Am. Chem. Soc.
2007, 129, 11684. (d) Laquindanum, J. G.; Katz, H. E.; Dodabalapur, A.;
Lovinger, A. J. J. Am. Chem. Soc. 1996, 118, 11331. (e) Pappenfus, T. M.;
Chesterfield, R. J.; Frisbie, C. D.; Mann, K. R.; Casado, J.; Raff, J. D.;
Miller, L. L. J. Am. Chem. Soc. 2002, 124, 4184. (f) Moslin, R. M.; Andrew,
T. L.; Kooi, S. E.; Swager, T. M. J. Am. Chem. Soc. 2009, 131, 20.
(12) Pappenfus, T. M.; Hermanson, B. J.; Helland, T. J.; Lee, G. G. W.;
Drew, S. M.; Mann, K. R.; McGee, K. A.; Rasmussen, S. C. Org. Lett.
2008, 10, 1553, and references therein.
disappearance of the dark brown color of the starting DCF1a
(14) Lim, Y.-F.; Shu, Y.; Parkin, S. R.; Anthony, J. E.; Malliaras, G. G.
J. Mater. Chem. 2009, 19, 3049.
(15) (a) Yang, C.; Cho, S.; Chiechi, R. C.; Walker, W.; Coates, N. E.;
Moses, D.; Heeger, A. J.; Wudl, F. J. Am. Chem. Soc. 2008, 130, 16524.
(b) Walker, W.; Veldman, B.; Chiechi, R.; Partil, S.; Bendikov, M.; Wudl,
F. Macromolecules 2008, 41, 7278.
(16) Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chem. ReV. 1965,
65, 261.
(17) Day, J. H. Chem. ReV. 1953, 53, 167.
(13) Yamashita, Y.; Suzuki, T.; Saito, G.; Mukai, T. Chem. Commun.
1986, 1489.
(18) Becker, H.; King, S. B.; Taniguchi, M.; Vanhessche, K. P. M.;
Sharpless, K. B. J. Org. Chem. 1995, 60, 3940.
Org. Lett., Vol. 12, No. 22, 2010
5303