times higher than that of the standard SPI and Nafion 117,
respectively.
In summary, we have synthesized a new type of PEM
comprising an SPI hydrogen-bonded with an adenine-based
crosslinking agent. Compared with the pure SPI, both the
SPI/SMA-A and SPI-U/SMA-A membranes exhibited
improved properties: higher proton conductivities at high
temperature and low RH, lower methanol permeabilities,
and higher oxidative stabilities; the latter blend (SPI-U/SMA-A)
is more favorable for membrane performance in DMFCs. We
believe that this technique based on noncovalent interactions
should be applicable to other hydrocarbon-based polymer
membranes, thereby providing a useful method for improving
the properties of PEMs.
Fig. 2 Temperature dependence of the proton conductivities for
the SPI, SPI/SMA-A, and crosslinked SPI-U/SMA-A membranes at
50 and 90% RH.
Notes and references
1 (a) M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and
J. E. McGrath, Chem. Rev., 2004, 104, 4587; (b) B. C. H. Steele and
A. Heinzel, Nature, 2001, 414, 345; (c) C. Y. Wang, Chem. Rev.,
2004, 104, 4727.
2 (a) Y. Woo, S. Y. Oh, Y. S. Kang and B. Jung, J. Membr. Sci.,
2003, 220, 31; (b) Y. S. Ye, W. Y. Chen, Y. J. Huang, M. Y. Cheng,
Y. C. Yen, C. C. Cheng and F. C. Chang, J. Membr. Sci., 2010,
362, 29; (c) H. Tang, M. Pan, S. Lu, J. Lu and S. P. Jiang, Chem.
Commun., 2010, 46, 4351.
3 (a) B. R. Einsla and J. E. McGrath, Am. Chem. Soc. Div. Fuel
Chem., 2004, 49, 616; (b) K. Miyatake, Y. Chikashige, E. Higuchi
and M. Watanabe, J. Am. Chem. Soc., 2007, 129, 3879; (c) D. S.
Kim, G. P. Robertson and M. D. Guiver, Macromolecules,
2008, 41, 2126.
Fig. 3 TEM micrographs of the (A) SPI and (B) SPI-U/SMA-A
4 (a) Y. Fu, A. Manthiram and M. D. Guiver, J. Electrochem. Soc.,
2007, 9, 905; (b) Y. Fu, W. Li and A. Manthiram, J. Membr. Sci.,
2008, 310, 262; (c) W. Li, A. Bellay, Y. Z. Fu and A. Manthiram,
J. Power Sources, 2008, 180, 719.
membranes.
Table S1 (ESIw) reveals that both blended membranes had
lower methanol diffusion coefficients relative to that of the SPI
membrane, with an especially significantly lower value for the
crosslinked SPI-U/SMA-A membrane. The incorporation of
the adenine-based SMA-A into the SPI or SPI-U caused the
pendent adenine groups to insert into the sulfonic acid
domains of the SPI or SPI-U, thereby retarding methanol
crossover. Moreover, the presence of the crosslinking agent
between the polymer chains prevented excessive water swelling
while simultaneously retarding the degree of methanol
crossover.4 The methanol permeability of the SPI-U/SMA-A
membrane was only 11% and 7% of that of the SPI membrane
and Nafion 117 under the same conditions, respectively
(0.94 Â 10À7 cm2 sÀ1 for SPI-U/SMA-A, 8.52 Â 10À7 cm2 sÀ1
for SPI, 13.1 Â 10À7 cm2 sÀ1 for Nafion 117). The ratio of the
proton conductivity to the methanol permeability—i.e., the
selectivity (F)—is an effective parameter for evaluating
membrane performance in DMFCs. Table S1 (ESIw) indicates
that the selectivity of the crosslinked supramolecular
SPI-U/SMA-A membrane was approximately five and seven
5 (a) Y. Yin, S. Hayashi, O. Yamada, H. Kita and K. I. Okamoto,
Macromol. Rapid Commun., 2005, 26, 696; (b) Y. S. Oh, H. J. Lee,
M. Yoo, H. J. Kim, J. Han, K. Kim, J. D. Hong and T. H. Kim,
Chem. Commun., 2008, 2028.
6 D. Bogdal, P. Perez, J. Pielichowski and A. Prociak, Adv. Polym.
Sci., 2003, 163, 193.
7 (a) T. Park and S. S. Zimmerman, J. Am. Chem. Soc., 2006, 128,
11582; (b) G. Cooke and V. M. Rotello, Chem. Soc. Rev., 2002,
31, 275.
8 (a) L. L. De Lucca Freitas and R. Stadler, Macromolecules, 1987,
20, 2478; (b) C. Hilger, M. Draeger and R. Stadler, Macro-
molecules, 1992, 25, 2498; (c) L. R. Rieth, R. F. Eaton and
G. W. Coates, Angew. Chem., Int. Ed., 2001, 40, 2153.
9 (a) R. J. Thibault, P. J. Hotchkiss, M. Gray and V. M. Rotello,
J. Am. Chem. Soc., 2003, 125, 11249; (b) T. Kawakami and
T. Kato, Macromolecules, 1998, 31, 4475; (c) K. P. Nair,
V. Breedveld and M. Weck, Macromolecules, 2008, 41, 3429.
10 C. C. Cheng, Y. C. Yen, Y. S. Ye and F. C. Chang, J. Polym. Sci.,
Part A: Polym. Chem., 2009, 47, 6388.
11 (a) J. Saito, K. Miyatake and M. Watanabe, Macromolecules,
2008, 41, 2415; (b) J. Wang, Y. Song, C. Zhang, Z. Ye, H. Liu,
M. H. Lee, D. Wang and J. Ji, Macromol. Chem. Phys., 2008, 209,
1495; (c) E. K. Pefkianakis, V. Deimede, M. K. Daletou,
N. Gourdoupi and J. K. Kallitsis, Macromol. Rapid Commun.,
2005, 26, 1724.
c
7556 Chem. Commun., 2010, 46, 7554–7556
This journal is The Royal Society of Chemistry 2010