5648
M. Adib et al. / Tetrahedron Letters 51 (2010) 5646–5648
CO2Me
CO2Me
C
C
CO2Me
+
P(OR')3
+
_
(R'O)3P
CO2Me
CO2Me
O
O
O
CO2Me
S
R
O
O
R'
+
+
4
3
7
N
_
N
R'
P
Ar
H
O
H
O
O
R'
O
9
10
S
R
RNH2
ArSO2NCO
+
N
N
Ar
H
H
8
1
2
CO2Me
CO2Me
O
O
O
O
S
R
+
N
N
Ar
P
H
O
R'
O
H
R'
R'
5
6
Scheme 3.
5. Byun, E.; Hong, B.; Kathlia, A.; De Castro, K. A.; Lim, M.; Rhee, H. J. Org. Chem.
2007, 72, 9815–9817.
6. Janbon, M.; Chaptal, J.; Vedel, A.; Schaap, J. Montpellier Med. 1942, 441, 21–22.
7. Saari, L. L.; Cotterman, J. C.; Primiani, M. M. Plant Physiol. 1990, 93, 55–61.
8. Faidallah, H. M.; Al-Saadi, M. S.; Rostom, S. A. F.; Fahmy, H. T. Y. Med. Chem. Res.
2007, 16, 300–318.
9. Lawrence, D. B.; Ragucci, K. R.; Long, L. B.; Helfer, L. A. J. Manag. Care Pharm.
2006, 12, 466–471.
10. Heron, L.; Virsolvy, A.; Peyrollier, K. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 8387–
8391.
11. Thomas, P. M.; Cote, G. J.; Wohllk, N. Science 1995, 268, 426–429.
12. Rissanen, J.; Markkanen, A.; Kärkkäinen, P. Diabetes Care 2000, 23, 70–73.
13. Roth, B. D.; Roark, H.; Picard, J. A.; Stanfield, R. L.; Bousley, R. F.; Anderson, M.
K.; Hamelehle, K. L.; Homan, R.; Krouse, B. R. Bioorg. Med. Chem. Lett. 1995, 5,
2367–2370.
um ion 10 may be attacked by the conjugate base 9 of the NH-acid to
afford the corresponding selectively alkylated sulfonyl urea 5. Di-
methyl (E)-2-(diethoxyphosphoryl)-2-butenedioate (6, R0 = ethyl)
was isolated as a by-product and characterized. This further sup-
ports the possibility of the proposed mechanism.21
In conclusion, we have developed a simple and efficient strategy
for the direct one-pot synthesis and chemoselective sulfonamide
N-alkylation of sulfonyl ureas which are of potential synthetic
and pharmacological interest. Excellent yields of the products,
short reaction times, ambient temperature, and mild conditions
are the main advantages of this method. The reactions were per-
formed under neutral conditions, and the starting materials and re-
agents do not require any activation.
14. Typical procedure for the preparation of compounds 5a–q, exemplified with 5a: A
solution of benzylamine (0.107 g, 1 mmol) and p-toluenesulfonyl isocyanate
(0.197 g, 1 mmol) in dry CH2Cl2 (5 mL) was stirred at 25 °C for 5 min. Then
triethylphosphite (0.166 g, 1 mmol) was added. Next, a solution of dimethyl
acetylenedicarboxylate (0.142 g, 1 mmol) in dry CH2Cl2 (3 mL) was added
dropwise over 10 min, and the resulting mixture was stirred at 25 °C for 2 h.
The solvent was removed under reduced pressure, and the residue was purified
by column chromatography (Merck silica gel, 60 mesh) using n-hexane–EtOAc
(4:1) as eluent. {[(Benzylamino)carbonyl](ethyl)amino}(4-methylphenyl)dioxo-
k6-sulfane (5a): Yield: 0.32 g (98%); colorless crystals, mp 135–136 °C. IR (KBr)
Acknowledgment
This research was supported by the Research Council of the Uni-
versity of Tehran as research project 6102036/1/03.
(m
max/cmꢀ1): 3394 (NH), 1691 (C@O), 1597, 1520, 1342, 1242, 1152, 1087, 944,
812, 728, 699, 666. EI-MS, m/z (%): 333 (M++1, 51), 290 (4), 177 (75), 155 (12),
106 (100), 91 (84), 77 (4), 65 (22). 1H NMR (500.1 MHz, CDCl3): d 1.24 (t,
J = 7.0 Hz, 3H, CH2CH3), 2.39 (s, 3H, CH3), 3.74 (q, J = 7.0 Hz, 2H, CH2CH3), 4.44
(d, J = 5.6 Hz, 2H, NHCH2), 7.20–7.33 (m, 7H, 7CH), 7.62 (d, J = 8.3 Hz, 2H, 2CH),
7.69 (t, J = 5.6 Hz, 1H, NH). 13C NMR (125.8 MHz, CDCl3): d 15.33 (CH2CH3),
21.55 (CH3), 41.72 and 44.94 (2CH2), 126.87, 127.49, 127.65, 128.68 and 130.00
(9CH), 136.40, 138.23 and 144.68 (3C), 152.51 (C@O).
References and notes
1. Smith, M. B.; March, J. Advanced Organic Chemistry, 5th ed.; Wiley: New York,
2001. p 499; Brondani, D. J.; Moreira, D. R. D.; de Farias, M. P. A.; Barbosa, F. F.;
Leite, A. C. L. Tetrahedron Lett. 2007, 48, 3919–3923; Conreaux, D.; Bossharth,
E.; Monteiro, N.; Desbordes, P.; Balme, G. Tetrahedron Lett. 2005, 46, 7917–
7920.
15. Zbiral, E. Synthesis 1974, 775–797.
16. Becker, K. B. Tetrahedron 1987, 36, 1717–1745.
17. Ferrer, P.; Auendano, C.; Sollhuber, M. Liebigs Ann. Chem. 1995, 1895–1899.
18. Johnson, A. W. Ylide Chemistry; Academic Press: New York, 1966.
19. Kolodiazhnyi, O. I. Russ. Chem. Rev. 1997, 66, 225–254.
2. Ohtani, B.; Osaki, H.; Nishimoto, S.; Kagiya, T. J. Am. Chem. Soc. 1986, 108, 308–
310; Fujita, K.; Komatsubara, A.; Yamaguchi, R. Tetrahedron 2009, 65, 3624–
3628; Liu, Y. L.; Liu, L.; Wang, D.; Chen, Y. J. Tetrahedron 2009, 65, 3473–3479.
3. Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N.; Khalili, D. Tetrahedron 2009, 65,
3893–3899.
20. Bestmann, H. J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109, 85–163.
21. Yamazaki, S.; Takada, T.; Imanishi, T.; Moriguchi, Y.; Yamabe, S. J. Org. Chem.
1998, 63, 5919–5928.
4. Regiec, A.; Mastalarz, H.; Mastalarz, A.; Kochel, A. Tetrahedron Lett. 2009, 50,
2624–2627; Shieh, W. C.; Dell, S.; Bach, A.; Repic, O.; Blacklock, T. J. J. Org. Chem.
2003, 68, 1954–1957.