not allow the formation of all three covalent tethers. Such a
prediction was confirmed by the solid-state structure of 2d.
Single crystals of 2d were obtained from a mixed solvent
containing DMF, CHCl3, and C2H5OC2H5 (1/1/4, v/v/v) by
slow evaporation of solvents at room temperature. The
solid-state structure of 2d (Fig. 2) reveals a double-decked
crescent in which the same type of benzene residues from two
PE segments are registered via the disulfide-containing tethers.
In the crystal structure of 2d, the two meta-linked benzene
residues sit on top of each other, in a face-to-face stacked
geometry and with an inter-planar distance of B3.6 A.
The para-linked residues from the two PE segments are
brought into close proximity but do not adopt a parallel-
stacked geometry. Instead, a roughly edge-to-face stacking
configuration commonly observed for aromatic interactions
was associated with the para-linked residues of 2d.
Notes and references
z Crystal data for 2a: C68H60O16S4, M = 1261.40, orthorhombic,
space group Pbcn, a = 16.300(3), b = 24.855(5), c = 15.010(3) A,
b = 901, V = 6081(2) A3, Z = 4, T = 173(2) K, m(Mo-Ka) = 0.228
mmꢁ1, 10 154 reflections measured (5370 unique, Rint = 0.0496).
R1[I
4 2s(I)] = 0.0751, wR2 =
0.1744 (F2, all data). 2d:
C62H46O12S6ꢂC2H5OC2H5, M = 1249.47, monoclinic, space group
P21/c, a = 7.6656(15), b = 27.416(6), c = 29.336(6) A, b = 92.51(3)1,
V = 6159(2) A3, Z = 4, T = 173(2) K, m(Mo-Ka) = 2.581 mmꢁ1
,
= 0.0703).
43 226 reflections measured (11 099 unique, Rint
R1[I 4 2s(I)] = 0.0765, wR2 = 0.2178 (F2, all data).
1 J. L. Sessler and A. K. Burrell, Top. Curr. Chem., 1992, 161, 177;
J. S. Moore, Acc. Chem. Res., 1997, 30, 402; U. H. F. Bunz, Y. Rubin
and Y. Tobe, Chem. Soc. Rev., 1999, 28, 107; M. M. Haley, J. J. Pak
and S. C. Brand, Top. Curr. Chem., 1999, 201, 81; C. Grave and
A. D. Schluter, Eur. J. Org. Chem., 2002, 3075; S. Hoger, Chem.–Eur.
¨
¨
J., 2004, 10, 1320; W. Zhang and J. S. Moore, Angew. Chem., Int. Ed.,
2006, 45, 4416; Z. T. Li, J. L. Hou, C. Li and H. P. Yi, Chem. Asian J.,
2006, 1, 766; M. J. MacLachlan, Pure Appl. Chem., 2006, 78, 873;
Finally, the critical role of multiple covalent tethers played
in achieving the doubled-decked shapes is demonstrated by
comparing a singly tether dimer (see 4w) consisting of the
above PE segments with its corresponding monomer (see 3w).
Very small differences (0.01 to 0.03 ppm) between the
chemical shifts of the aromatic protons of both the dimer
and the monomer were observed, suggesting that a single
covalent tether could not ensure the stacking of the
PE segments.w
In summary, restricting the relative motion between two
curved PE structural segments has led to molecules with folded
or covalently locked double-decked crescent shapes. PE segments
connected via two disulfide-containing tethers underwent
restricted relative motion, resulting in folded conformations.
Connecting the PE segments with three such tethers led to a
covalently locked, double-decked crescent with minimal
conformational flexibility. In both the folded and covalently
locked molecules, the PE segments stacked in a roughly
face-to-face, eclipsed disposition that is usually avoided by
aromatic hydrocarbons undergoing stacking interaction. While
it is difficult to predictably arrange two or more structural
segments that associate via noncovalent interactions with or
without a single covalent tether, results from this study have
shown that the arrangement of two rigid structural component
becomes increasingly predictable and controllable in the presence
of multiple, i.e., two or more, covalent tethers. Further improve-
ment of such a strategy based on directed structural ordering
may lead to the predictable, controlled construction of structures
with well-defined conformations and shapes.
S. Hoger, Pure Appl. Chem., 2010, 82, 821.
¨
2 M. A. B. Block, C. Kaiser, A. Khan and S. Hecht, Top. Curr.
Chem., 2005, 245, 89; D. Pasini and M. Ricci, Curr. Org. Synth.,
2007, 4, 59.
3 W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag,
New York, 1984; A. Klug, Philos. Trans. R. Soc. London, Ser. B,
1999, 354, 531.
4 J. M. Lehn, Supramolecular Chemistry, VCH, New York, 1995.
5 L. J. Prins, D. N. Reinhoudt and P. Timmerman, Angew. Chem.,
Int. Ed., 2001, 40, 2382.
6 J. M. Berg, J. L. Tymoczko and L. Stryer, in Biochemistry, New
York, 6th edn, 2007, ch. 2, W. H. Freeman; G. Rose, P. Fleming,
J. Banavar and A. Maritan, Proc. Natl. Acad. Sci. U. S. A., 2006,
103, 16623.
7 S. H. Gellman, Acc. Chem. Res., 1998, 31, 173; D. J. Hill,
M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, Chem.
Rev., 2001, 101, 3893; I. Huc, Eur. J. Org. Chem., 2004, 17;
B. Gong, Acc. Chem. Res., 2008, 41, 1376; L. H. Yuan,
H. Q. Zeng, K. Yamato, A. R. Sanford, W. Feng, H. Atreya,
D. K. Sukumaran, T. Szyperski and B. Gong, J. Am. Chem. Soc.,
2004, 126, 16528; A. Petitjean, L. A. Cuccia, M. Schmutz and
J.-M. Lehn, J. Org. Chem., 2008, 73, 2481.
8 J. S. Lindsey, New J. Chem., 1991, 15, 153; M. M. Conn and
J. Rebek, Chem. Rev., 1997, 97, 1647; J. M. Lehn, Chem.–Eur. J.,
2000, 6, 2097; S. C. Zimmerman and P. S. Corbin, Struct. Bonding,
2000, 96, 63; S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev.,
2000, 100, 853; M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita,
T. Kusukawa and K. Biradha, Chem. Commun., 2001, 509;
T. Rehm and C. Schmuck, Chem. Commun., 2008, 801;
H. J. Schneider, Angew. Chem., Int. Ed., 2009, 48, 3924.
9 J. S. Nowick and J. S. Chen, J. Am. Chem. Soc., 1992, 114, 1107;
J. Yang, E. K. Fan, S. J. Geib and A. D. Hamilton, J. Am. Chem.
Soc., 1993, 115, 5314; J. L. Sessler and R. Z. Wang, J. Am. Chem.
Soc., 1996, 118, 9808; R. H. Vreekamp, J. P. M. van Duynhoven,
M. Hubert, W. Verboom and D. N. Reinhoudt, Angew. Chem., Int.
Ed. Engl., 1996, 35, 1215; G. W. Orr, L. J. Barbour and J. L. Atwood,
Science, 1999, 285, 1049; V. Percec, W. D. Cho and G. Ungar, J. Am.
Chem. Soc., 2000, 122, 10273; E. A. Archer and M. J. Krische, J. Am.
Chem. Soc., 2002, 124, 5074; A. X. Wu, A. Chakraborty,
J. C. Fettinger, R. A. Flowers and L. Isaacs, Angew. Chem., Int.
Ed., 2002, 41, 4028; H. Fenniri, B. L. Deng and A. E. Ribbe, J. Am.
Chem. Soc., 2002, 124, 11064; A. M. McGhee, C. Kilner and
A. J. Wilson, Chem. Commun., 2008, 344; D. W. Kuykendall,
C. A. Anderson and S. C. Zimmerman, Org. Lett., 2009, 11, 61.
10 B. Kamber, A. Hartmann, K. Eisler, B. Riniker, H. Rink, P. Sieber
and W. Rittel, Helv. Chim. Acta, 1980, 63, 899.
This work was supported by the Changjiang Scholar
Program and the Cultivation Fund of the Key Scientific and
Technical Innovation Project, Ministry of Education of China
Grant 706009 (to BG), the NSFC Grant 20772012, RFDP
Grant 20070027038 and KNDCDP Grant 2009ZX09502-008
(to LH), and the US National Science Foundation Grant
CHE-0314577 (to BG), the Beijing Municipal Commission
of Education, and the Scientific Research Foundation of
Beijing Normal University (2009SC-1).
11 N. H. Martin, N. W. Allen III, K. D. Moore and L. Vo,
THEOCHEM, 1998, 454, 161.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 7361–7363 | 7363