P. Kumar et al. / Tetrahedron Letters 51 (2010) 5838–5839
5839
OH
anti-1,3-diol with high degree of enantio- and diastereoselectivi-
ties. The desired stereocenters can simply be achieved by changing
the catalyst. Further application of this methodology to the synthe-
ses of biologically active compounds containing 1,3-polyols is cur-
rently underway in our laboratory.
a
c
CHO
COOEt
3
4, P = H
5, P = TBS
b
TBSO
OH
Acknowledgments
ONHPh
OH
TBSO
OH
e
d
7
6
M.P. and P.G. thank DST, New Delhi and CSIR, New Delhi for
financial assistance. Financial support from DST, New Delhi (Grant
No. SR/S1/OC-44/2009) is gratefully acknowledged.
TBSO
OP
TBSO
O
f
g
References and notes
9
, P = H
8
b
1. (a) Endo, A. J. Med. Chem. 1985, 28, 401–405; (b) Vega, L.; Crundy, S. J. Am. Med.
Assoc. 1987, 257, 33–38. and references cited therein.
10
, P = TBS
2. Goldstein, J. L.; Brown, M. S. Annu. Rev. Biochem. 1977, 46, 897–930.
3. (a) Stokker, G. E.; Hoffman, W. F.; Alberts, A. W.; Cragoe, E. J., Jr.; Deana, A. A.;
Gilfilan, J. L.; Huff, J. W.; Novello, F. C.; Prugh, J. D.; Smith, R. L.; Willard, A. K. J.
Med. Chem. 1985, 28, 347–358; (b) Hoffman, W. F.; Alberts, A. W.; Cragoe, E. J.,
Jr.; Deana, A. A.; Evans, B. E.; Gilfilan, J. L.; Gould, N. P.; Huff, J. W.; Novello, F. C.;
Prugh, J. D.; Rittle, K. E.; Smith, R. L.; Stokker, G. E.; Willard, A. K. J. Med. Chem.
1986, 29, 170–181; (c) Yadav, V. K.; Kapoor, K. K. Ind. J. Chem. 1996, 35B, 1125–
1143.
4. For the synthesis of arylethyl or (E)-arylethenyl substituted b-hydroxy-d-
lactone, see: (a) Sabitha, G.; Sudhakar, K.; Srinivas, C.; Yadav, J. S. Synthesis
2007, 705–708; (b) Bouzbouz, S.; Cossy, J. Tetrahedron Lett. 2000, 41, 3363–
3366; (c) Kiyooka, S.-I.; Yamaguchi, T.; Maeda, H.; Kira, H.; Hena, M. A.; Horiike,
M. Tetrahedron Lett. 1997, 38, 3553–3556; (d) Honda, T.; Ono, S.; Mizutani, H.;
Hallinan, K. O. Tetrahedron: Asymmetry 1997, 8, 181–184; (e) Solladie, G.;
Bauder, C.; Rossi, L. J. Org. Chem. 1995, 60, 7774–7777; (f) Minami, T.;
Takahashi, K.; Hiyama, T. Tetrahedron Lett. 1993, 34, 513–516; (g) Bonini, C.;
Pucci, P.; Viggiani, L. J. Org. Chem. 1991, 56, 4050–4052; (h) Roth, B. D.; Roark,
W. H. Tetrahedron Lett. 1988, 29, 1255–1258; (i) Lynch, J. E.; Volante, R. P.;
Wattley, R. V.; Shinkai, I. Tetrahedron Lett. 1987, 28, 1385–1387; (j) Guindon, Y.;
Yoakim, C.; Bernstein, M. A.; Morton, H. E. Tetrahedron Lett. 1985, 26, 1185–
1188; (k) Prasad, K.; Repic, O. Tetrahedron Lett. 1984, 25, 2435–2438; (l)
Majewski, M.; Clive, D. L. J.; Anderson, P. C. Tetrahedron Lett. 1984, 25, 2101–
2104.
O
TBSO
OP
O
O
h
OH
OH
11
2
Scheme 1. Reagents and conditions: (a) (i) nitrosobenzene,
(EtO)2P(O)CH2COOEt, DBU, LiCl, CH3CN; (ii) H2/Pd–C, EtOAc, 8 h, 65%; (b) TBSCl,
-proline,
L-proline, DMSO;
imidazole, DMF, overnight, 91%; (c) (i) DIBAL-H, DCM, ꢀ78 °C; (ii)
L
nitrosobenzene, DMSO; (iii) NaBH4, MeOH, 0.5 h, 70% (over three steps); (d) H2/Pd–
C, EtOAc, 8 h, 92%; (e) (i) TsCl, Bu2SnO, Et3N, 2 h; (ii) K2CO3, MeOH, rt, 1 h, 82% (over
two steps); (f) vinylmagnesium bromide, 1 h, 81%; (g) TBSCl, imidazole, DMF,
overnight, 88%; (h) RuCl3ꢁ3H2O, NaIO4, CCl4–H2O–CH3CN = 4:1:1, 5 h, 44%, (i) cat.
HCl, MeOH, overnight, 79%.
to furnish O-amino-substituted allylic alcohol which was directly
subjected to hydrogenation conditions using catalytic amounts of
Pd/C to furnish the
c
-hydroxy ester 49 in good yield and in >97%
ee.10
5. Dalko, P. I. Enantioselective Organocatalysis: Reactions and Experimental
Procedures; Wiley-VCH: Weinheim, 2007.
6. MacMillian, D. W. C. Nature 2008, 455, 304–308.
The free hydroxy group of c-hydroxy ester 4 was protected as
TBS ether to furnish compound 5 in 91% yield. The Dibal-H reduc-
7. Kondekar, N. B.; Kumar, P. Org. Lett. 2009, 11, 2611–2614.
tion of ester 5 at ꢀ78 °C furnished aldehyde which was subjected
8. (a) Kumar, P.; Naidu, S. V.; Gupta, P. J. Org. Chem. 2005, 70, 2843–2846; (b)
Kumar, P.; Naidu, S. V. J. Org. Chem. 2005, 70, 4207–4210; (c) Gupta, P.; Naidu, S.
V.; Kumar, P. Tetrahedron Lett. 2005, 46, 6571–6573; (d) Kumar, P.; Gupta, P.;
Naidu, S. V. Chem. Eur. J. 2006, 12, 1397–1402; (e) Kumar, P.; Naidu, S. V. J. Org.
Chem. 2006, 71, 3935–3941; (f) Gupta, P.; Kumar, P. Eur. J. Org. Chem. 2008,
1195–1202; (g) Pandey, S. K.; Pandey, M.; Kumar, P. Tetrahedron Lett. 2008, 49,
3297–3299; (h) Chowdhury, P. S.; Gupta, P.; Kumar, P. Tetrahedron Lett. 2009,
50, 7018–7020.
to
a-aminoxylation catalyzed by L-proline, followed by in situ
reduction using NaBH4 to furnish the O-amino-substituted diol
6 in overall 70% yield and 92% de (determined from the 1H and
13C NMR spectral analysis). Compound 6 was subjected to reduc-
tive hydrogenation conditions to afford the diol 711 in 92% yield,
which on selective monotosylation and base treatment furnished
epoxide 8 in 82% yield. Epoxide 8 was opened with vinylmagne-
sium bromide to get the homoallylic alcohol 9 in 81% yield, which
on protection of free hydroxy as TBS ether afforded compound 10
in 88% yield. Olefinic oxidation of 10 using RuCl3ꢁ3H2O and NaIO4
furnished the acid 11, which was cyclized under acidic conditions
(catalytic amount of HCl in MeOH) to give the lactone 2 in good
9. Spectral data of 4: ½a D25
ꢀ12.25 (c 1, CHCl3). IR (neat, cmꢀ1): mmax 3486, 1730,
ꢂ
1602, 1491, 1023, 931. 1H NMR (200 MHz, CDCl3): d 1.32 (t, J = 7.2 Hz, 3H),
1.86–1.71 (m, 2H), 1.87–2.00 (m, 2H), 2. 52 (t, J = 7.1 Hz, 2H), 2.67–2.95 (m,
2H), 3.66–3.76 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 7.40–7.23 (m, 5H); 13C NMR
(50 MHz, CDCl3): 14.1, 27.9, 30.8, 32.2, 39.1, 60.5, 70.6, 125.8, 128.4, 128.5,
141.9, 174.2. Anal. Calcd for C14H20O3: C, 71.16; H, 8.53. Found: C, 71.20; H,
8.46.
10. The enantiomeric excess was determined by converting the alcohol 4 into the
Mosher ester and analyzing the 19F spectrum.
yield. Mp: 106ꢀ107 °C; lit.4e mp: 108 °C, ½a D25
ꢂ
+68.69 (c 2.0,
11. Spectral data of 7: ½a D25
ꢂ
ꢀ20.8 (c 0.14, CHCl3). IR (CHCl3, cmꢀ1): mmax 3412,
CHCl3); lit.4h
½
a 2D5
+68.88 (c 2.29, CHCl3). The physical and spec-
ꢂ
3018, 2938, 1612, 1513, 1248, 1215. 1H NMR (200 MHz, CDCl3): d 0.10 (s, 6H),
0.91 (s, 9H), 1.25–1.28 (m, 2H), 1.54–1.62 (m, 1H), 1.67–1.71 (m, 1H), 1.78–
1.89 (m, 2H), 2.58–2.68 (m, 2H), 3.47 (dd, J = 4.9, 11.1 Hz, 1H), 3.61 (dd, J = 7.5,
11.1 Hz, 1H), 3.85–4.08 (m, 2H), 7.09–7.31 (m, 5H); 13C NMR (50 MHz, CDCl3):
d ꢀ4.7, ꢀ4.1, 17.9, 25.8, 31.1, 38.9, 39.5, 67.0, 71.1, 72.0, 122.8, 125.9, 128.2,
128.4, 141.9. Anal. Calcd for C18H32O3Si: C, 66.62; H, 9.94. Found: C, 66.56; H,
9.88.
troscopic data of 2 were in full agreement with the literature
data.4h,e
In conclusion a short and efficient asymmetric synthesis of lac-
tone moiety of compactin has been achieved by using a practical
and efficient organocatalytic strategy amenable to both syn and