pubs.acs.org/joc
infection with this organism is a significant risk factor for
A Practical Total Synthesis of (þ)-Spirolaxine
the development of peptic ulceration4 and adenocarcinoma
of the distal stomach.5 Current treatment of H. pylori infec-
tion involves the prescription of one or more antibiotics in
combination with H2 blockers; however, none of the existing
treatments are capable of complete eradication of H. pylori.6
Spirolaxine 1 and spirolaxine methyl ether 2 (Figure 1) are
produced by various strains of white rot fungi belonging to
the genera Sporotrichum and Phanerochaete.
Methyl Ether
J. S. Yadav,* M. Sreenivas, A. Srinivas Reddy, and
B. V. Subba Reddy
Division of Organic Chemistry, Discovery Laboratory,
Indian Institute of Chemical Technology, Hyderabad, India
Received September 3, 2010
FIGURE 1. Chemical structure of spirolaxine methyl ether.
These are potent helicobactericidal compounds and useful
for the treatment of gastroduodenal disorders and the pre-
vention of gastric cancer.7 Several structurally related phthal-
ide-containing helicobactericidal compounds that contain a
5,5-spiroacetal moiety have also been reported by Dekker
et al.,8 which also provide promising leads for the treatment
of H. pylori-related diseases.
The spirolaxine and its methyl ether are found to exhibit
cholesterol lowering activity.9a More recent studies have
shown that it has cytotoxic activity toward endothelial cells
(BMEC and Huvec) as well as a variety of tumor cell lines
(LoVo and HL60).9b,c Consequently, there have been some
reports on the total synthesis of spirolaxine methyl ether.10
Due to its fascinating structural features and potent bio-
logical activity, we have attempted the total synthesis of
spirolaxine methyl ether 2. Herein we report an efficient and
practical total synthesis of biologically active polyketide-
derived natural substance, (þ)-spirolaxine methyl ether 2.
An efficient and practical total synthesis of (þ)-spirolaxine
methyl ether is described. The phthalide-aldehyde 3 has
been prepared via the Diels-Alder reaction between 1,4-
unconjugated diene 5 and a long-chain acetylenic dieno-
phile 6. The carbon framework of spiroketal sulfone 4 has
been constructed from monobenzyl protected 1,5-pentanediol
and the stereochemistry in both the phthalide portion and
the spiroketal portion has been established by the Sharp-
less asymmetric epoxidation.
(5) (a) Nomura, A.; Stemmermann, G. N.; Chyou, P. H.; Kato, I.;
ꢀ
ꢀ
Perez-Perez, G. I.; Blaser, M. J. N. Engl. J. Med. 1991, 325, 1132–1136.
(b) Parsonnet, J.; Friedman, G. D.; Vandersteen, D. P.; Chang, Y.; Vogelman,
J. H.; Orentreich, N.; Sibley, R. K. N. Engl. J. Med. 1991, 325, 1127–1131.
(c) Sipponen, P.; Varis, K.; Fraki, O.; Korri, U. M.; Seppala, K.; Siurala, M.
Scand. J. Gastroenterol. 1990, 25, 966–973. (d) (a) Graham, D. Y.; Lew, G. M.;
Klein, P. D.; Evans, D. G.; Evans, D. J.; Saeed, Z. A.; Malaty, H. M. Ann.
Intern. Med. 1992, 116 (9), 705-708. (e) Hentschel, E.; Brandstatter, G.;
Dragosics, B.; Hirschl, A. M.; Nemec, H.; Schutze, K.; Taufer, M.; Wurzer,
H. N. Engl. J. Med. 1993, 328 (5), 308–312. (f) Marshall, B. J.; Goodwin, C. S.;
Warren, J. R.; Murray, R.; Blincow, E. D.; Blackbourn, S. J.; Phillips, M.;
Waters, T. E.; Sanderson, C. R. Lancet 1988, ii, 1437–1441. (g) Rauws, E. A. J.;
Tytgat, G. N. J. Lancet 1990, 335, 1233–1235.
Helicobacter pylori (H. Pylori) organisms are gram-negative
bacteria that infect the gastric mucosa in 20% to 80% of
the humans throughout the world.1 Prevalence of H. pylori
infection varies depending upon the age and the geographic
location.2a In most of the cases, infection will persist for the
lifetime of an individual without medical intervention.2b In
most infected persons, H. pylori infection is well tolerated
with few or no symptoms over the decades.3 However,
(6) (a) Walsh, J. H.; Peterson, W. L. N. Engl. J. Med. 1995, 333 (15), 984–
991. (b) Rathbone, B. Scrip Magazine 1993, 25.
(7) (a) Arnone, A.; Assante, G.; Nasini, G.; Vajna de Pava, O. Phyto-
chemistry 1990, 29, 613–616. (b) Gaudliana, M. A.; Huang, L. H.; Kaneko,
T.; Watts, P. C. PCT Int. Appl., 1996, W0 9605204; CAN 125:58200.
(8) Dekker, K. A.; Inagake, T.; Gootz, T. D.; Kaneda, K.; Nomura, E.;
Sakakibara, T.; Sakemi, S.; Sugie, Y.; Yamauchi, Y.; Yoshikawa, N.;
Kojima, N. J. J. Antibiot. 1997, 50, 833–839.
(9) (a) Blaser, M. J. Clin. Infect. Dis. 1992, 15, 386–391. (b) Penco, S.;
Pisano, C.; Giannini, G. WO Pat. 01/68070. (c) Deffieu, G.; Baute, R.; Baute,
M. A.; Neven, A. Sci. Ser. D 1979, 288, 647–649.
*To whom correspondence should be addressed. Fax: 91-40-27160512
(1) (a) Blaser, M. J. Clin. Infect. Dis. 1992, 15, 386–391. (b) Taylor, D. N.;
Blaser, M. J. Epidemiol. Rev. 1991, 13, 42–59.
(2) (a) Mackay, J.; Jemal, A.; Lee, N. C.; Parkin, D. M. The Cancer Atlas,
2nd ed.; American Cancer Society: New York, 2006. (b) Stoicov, C.; Saffari,
R.; Cai, X.; Hasyagar, C.; Houghton, J. Gene 2004, 341, 1–17.
(3) Dooley, C. P.; Cohen, H.; Fitzgibbons, P. L.; Bauer, M.; Appleman,
ꢀ
M. D.; Perez-Perez, G. I.; Blaser, M. J. N. Engl. J. Med. 1989, 321 (23), 1562–
ꢀ
1566.
(10) (a) Robinson, J. E.; Brimble, M. A. Chem. Commun. 2005, 1560–1562.
(b) Nannei, R.; Dallavalle, S.; Merlini, L.; Bava, A.; Nasini, G. J. Org. Chem.
2006, 71, 6277–6280. (c) Keaton, K. A.; Phillips, A. J. Org. Lett. 2007, 9, 2717–
2719. (d) Trost, B. M.; Weiss, A. H. Angew. Chem., Int. Ed. 2007, 46, 7664–7666.
ꢀ
ꢀ
(4) (a) Nomura, A.; Stemmermann, G. N.; Chyou, P. H.; Perez-Perez,
G. I.; Blaser, M. J. Ann. Intern. Med. 1994, 120 (12), 977–981. (b) Peterson,
W. L. N. Engl. J. Med. 1991, 324 (15), 1043–1048.
DOI: 10.1021/jo1016647
r
Published on Web 11/08/2010
J. Org. Chem. 2010, 75, 8307–8310 8307
2010 American Chemical Society