Article
Macromolecules, Vol. 44, No. 2, 2011 207
Acknowledgment. The financial support of NSFC [No.
50821062, 50521302, and 50973008] is gratefully acknowledged.
Supporting Information Available: Text giving the experi-
mental information and figures showing XRD of LS, FT-IR
1
spectra, H NMR spectra, MALDI-TOF mass spectra, TGA
and DSC traces, HR-TEM images, UV/vis, and fluorescence
spectra of PDI-LPS. This material is available free of charge via
References and Notes
(1) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science
1995, 270, 1789–1791.
(2) Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91,
954–985.
Figure 4. (a) Cyclic voltammetry of PDI-LPS. (b) Energy diagram of
ITO/PEDOT:PSS/P3HT:PDI-LPS:PDI-FCN2.
energy levels of PDI-LPS were determined using cyclic
voltammetry (CV) (Figure 4a), and the energy levels were
calculated according to the reported method.28 Figure 4b
compares the LUMO and HOMO energy levels of PDI-LPS
with represent semiconduct compounds. The LUMO
€
(3) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107,
1324–1338.
(4) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.;
Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119–1122.
(5) Peumans, P.; Uchida, S.; Forrest, S. R. Nature 2003, 425, 158.
ꢀ
(6) Liu, J.; Kadnikova, E. N.; Liu, Y.; McGehee, M. D.; Frechet,
energy level of PDI-LPS was obtained from the onset
red
J. M. J. J. Am. Chem. Soc. 2004, 126, 9486–9487.
(7) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.;
Yang, Y. Nature Mater. 2005, 4, 864–868.
(8) Kim, Y.; Cook, S.; Choulis, S. A.; Nelson, J.; Durrant, J. R.;
Bradley, D. D. C. Chem. Mater. 2004, 16, 4812–4818.
(9) Veenstra, S. C.; Verhees, W. J. H.; Kroon, J. M.; Koetse, M. M.;
Sweelssen, J.; Bastiaansen, J. J. A. M.; Schoo, H. F. M.; Yang, X.;
Alexeev, A.; Loos, J.; Schubert, U. S.; Wienk, M. M. Chem. Mater.
2004, 16, 2503–2508.
(10) Mikroyannidis, J. A.; Stylianakis, M. M.; Sharma, G. D.; Balraju,
P.; Roy, M. S. J. Phys. Chem. C 2009, 113, 7904–7912.
(11) Katz, H. E.; Johnson, A. J. L., J.; Kloc, C.; Siegrist, T.; Li, W.; Lin,
Y.-Y.; Dodabalapur, A. Nature 2000, 404, 478.
reduction potentials in Figure 4a: ELUMO = -e(E
þ
onset
4.39) = -e(-0.67 þ 4.39) = -3.72 eV. The absorption edge
of the film extends to 660 nm, from which the corre-
sponding optical energy gap (Eogpt) is calculated as 1.88 eV.
So Egopt = -e(EHOMO - ELUMO) and EHOMO = -5.60 eV.
As shown in Figure 4b, PDI-LPS has the proper HOMO and
LUMO level with P3HT. Compared with the low molar mass
PDI derivatives (e.g., PDI-FCN229), PDI-LPS has higher
LUMO level, which could help the solar cell device to own
higher open-circuit voltage.
Thermal Properties of PDI-LPS. We also investigated the
thermal properties of PDI-LPS (Figure S5). The PDI-LPS
began to decompose at 442 °C and lost about 5 wt % at ca.
430 °C. The DSC curve shows that the PDI-LPS does not
have any melting peaks, and its glass transition temperature
(Tg) locates at ∼310 °C, which is much higher than that of the
low molar mass PDI derivatives, for example, 135 °C of
N,N0-bis(cyclohexyl)-(1,7 and 1,6)-dicyanoperylene-3,4,9,
10-bis(dicarboximide) (PDI-CN).30 We consider the surpris-
ingly higher Tg is due to the excellent regular ladder structure
of the PDI-LPS. The double-strained structure could pro-
vide this material with excellent thermal property and di-
mensional stability due to the minimized movements of chain
segments.
(12) Neuteboom, E. E.; Meskers, S. C. J.; van Hal, P. A.; van Duren,
J. K. J.; Meijer, E. W.; Janssen, R. A. J.; Dupin, H.; Pourtois, G.;
ꢀ
Cornil, J.; Lazzaroni, R.; Bredas, J.-L.; Beljonne, D. J. Am. Chem.
Soc. 2003, 125, 8625–8638.
(13) El-Nahhal, I. M.; El-Ashgar, N. M. J. Organomet. Chem. 2007,
692, 2861–2886.
(14) Liu, L.; Lu, H.; Wang, H.; Bei, Y.; Feng, S. Appl. Organomet.
Chem. 2009, 23, 429–433.
(15) Brown, J. F.; Vogt, L. H.; Katchman, A.; Eustance, J. W.; Kiser,
K. M.; Krantz, K. W. J. Am. Chem. Soc. 1960, 82, 6194–6195.
(16) Gu, H. W.; Xie, P.;Shen, D.-Y.;Fu, P.-F.;Zhang, J.-M.;Shen, Z.-R.;
Tang, Y.-X.; Cui, L.; Kong, B.; Wei, X.-F.; Wu, Q.; Bai, F.-L.;
Zhang, R.-B. Adv. Mater. 2003, 15, 1355–1358.
(17) Zhang, X.; Chen, Z.; Wurthner, F. J. Am. Chem. Soc. 2007, 129,
4886–4887.
(18) Wan, Y.; Yang, L.; Zhang, J.; Zhang, P.; Fu, P.-F.; Zhang, T.; Xie,
€
P.; Zhang, R. Macromolecules 2006, 39, 541–547.
Conclusion
€
(19) Schneider, M.; Mullen, K. Chem. Mater. 2000, 12, 352–362.
(20) Kakudo, M.; Kasai, P. N.; Watase, T. J. Chem. Phys. 1953, 21,
1894–1895.
(21) Zhang, T.; Deng, K.; Zhang, P.; Xie, P.; Zhang, R. Chem.;Eur.
In summary, we synthesized a novel polymeric electron accep-
tor based on PDI-bridged ladder polysiloxane (PDI-LPS) via
self-assembled ladder superstructure (LS) of the monomer M2
for the first time. XRD, 29Si NMR, and VPO characterizations
supported that supramolecular LS directed the polymerization
pathway. Moreover, the target polymer PDI-LPS was confirmed
to possess high ladder regularity by an extremely narrow baseline
width (Δ < 1 ppm) for SiO2/2 unit in 29Si NMR spectra. HR-
TEM measurements revealed that the PDI-LPS had layered
structures in bulky state. In particular, PDI-LPS exhibited out-
standing physical properties such as good solubility, higher
thermal stability, a wide absorption region, and proper LUMO
energy level in contrast to PDI precursor. We thus think pre-
paration of polymeric n-type semiconductor might be an alter-
native electron acceptor material for polymer solar cells. More-
over, the methodology used is a universal route to construct
ladder electron acceptor materials with other organic semicon-
ductor bridges.
J. 2006, 12, 3630–3635.
(22) Gutmann, V. Electrochim. Acta 1976, 21, 661–670.
(23) Zhou, Q. L.; Yan, S. K.; Xie, P.; Zhang, R. B. Acta Polym. Sin.
2007, 918–930.
(24) Williams, E. A.; Cargioli, J. D.; Larochelle, R. W. J. Organomet.
Chem. 1976, 108, 153–158.
(25) Yamamoto, S.; Yasuda, N.; Ueyama, A.; Adachi, H.; Ishikawa, M.
Macromolecules 2004, 37, 2775–2778.
€
(26) Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem.;Eur.
J. 2001, 7, 2245–2253.
(27) Gvishi, R.; Reisfeld, R.; Burshtein, Z. Chem. Phys. Lett. 1993, 213,
338–344.
(28) Li, Y.; Cao, Y.; Gao, J.; Wang, D.; Yu, G.; Heeger, A. J. Synth.
Met. 1999, 99, 243–248.
(29) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J. Am.
Chem. Soc. 2007, 129, 15259–15278.
(30) Shin, W. S.; Jeong, H.-H.; Kim, M.-K.; Jin, S.-H.; Kim, M.-R.;
Lee, J.-K.; Lee, J. W.; Gal, Y.-S. J. Mater. Chem. 2006, 16, 384–390.