with alkenyl ethers via generation of platinum(II) carbenoids
through intermolecular nucleophilic attack of alkenyl ethers
on allenes.4 Recently, Zhang and co-workers reported the
gold(I)-catalyzed oxidative cyclization via generation of
gold(I) carbenoids through intermolecular nucleophilic attack
of pyridine N-oxides on alkynes.5 In this paper, we describe
the cationic rhodium(I)/cod complex-catalyzed cotrimeriza-
tion of propargyl esters and arylacetylenes, leading to
substituted dihydropentalenes,9 presumably via generation
of a cationic rhodium(I) carbenoid10,11 through intermolecu-
lar attack of a rhodium arylacetylide on the propargyl ester
followed by the reaction of another arylacetylene and
elimination of a carboxylic acid.
Scheme 2
Our research group has recently reported the cationic
rhodium(I) complex-catalyzed [3 + 2] and [2 + 1] cycload-
ditions of alkoxycarbonyl-substituted propargyl esters 1 with
electron-deficient alkynes and alkenes presumably via gen-
eration of carbonyl-stabilized cationic rhodium(I) vinylcar-
benoids A through the intramolecular 1,2-acyloxy rearrange-
ment (Scheme 1).8
generate (vinyl)rhodium intermediate B. Subsequent elimina-
tion of a carboxylic acid would generate carbonyl-stabilized
cationic rhodium(I) vinylcarbenoid C, which reacts with an
acrylamide derivative to give a trisubstituted cyclopropane.
We first examined the reaction of methoxycarbonyl-
substituted propargyl ester 1a, phenylacetylene (2a), and N,N-
dimethylacrylamide (3) at 40 °C in CH2Cl2 in the presence
of 10 mol % of [Rh(cod)2]BF4, which was effective for the
reaction shown in Scheme 1. However, an unexpected
cotrimerization product between 1a and 2a, dihydropentalene
4aa, was obtained in low yield instead of the expected
cyclopropanation product (Scheme 3).
Scheme 1
Scheme 3
On the other hand, it is well-known that the cationic
rhodium(I) complex is able to catalyze the cross-dimerization
reactions between terminal alkynes and internal alkynes.12
In these reactions, the cationic rhodium(I) complex first reacts
with the terminal alkyne to generate the corresponding
rhodium acetylide, which subsequently reacts with the
internal alkyne to generate a (vinyl)rhodium intermediate.12
Thus we designed a new method for the generation of the
cationic rhodium(I) carbenoids as shown in Scheme 2.
Intermolecular nucleophilic attack of the rhodium arylacetyl-
ide on alkoxycarbonyl-substituted propargyl ester 1 would
We then focused our attention on the synthesis of
dihydropentalene 4aa and examined the reaction conditions
in the absence of acrylamide 3 to improve the yield of 4aa
(Table 1). However, the reaction of 1a and 2a in the absence
of 3 did not furnish 4aa at all (entry 1). It was anticipated
that coordination of 3 to the cationic rhodium plays an
(10) For examples of catalyses via rhodium(I) carbenoids, see: (a)
Nishimura, T.; Maeda, Y.; Hayashi, T. Angew. Chem., Int. Ed. 2010, 49,
7324. (b) Ref.8a (c) Ref 6. (d) Barluenga, J.; Vicente, R.; Lo´pez, L. A.;
Toma´s, M. J. Am. Chem. Soc. 2006, 128, 7050. (e) Barluenga, J.; Vicente,
R.; Lo´pez, L. A.; Toma´s, M. J. Organomet. Chem. 2006, 691, 5642. (f)
Barluenga, J.; Vicente, R.; Lo´pez, L. A.; Toma´s, M. Tetrahedron 2005,
61, 11327. (g) Barluenga, J.; Vicente, R.; Lo´pez, L. A.; Rubio, E.; Toma´s,
(8) (a) Shibata, Y.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2010,
132, 7896. For examples of catalyses via metal carbenoids through the
intramolecular 1,2-acyloxy rearrangement of propargyl esters, see: (b)
Rautenstrauch, V. Tetrahedron Lett. 1984, 25, 3845. (c) Rautenstrauch, V.
J. Org. Chem. 1984, 49, 950. (d) Mainetti, E.; Mourie`s, V.; Fensterbank,
L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41,
2132. (e) Miki, K.; Ohe, K.; Uemura, S. Tetrahedron Lett. 2003, 44, 2019.
(f) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (g)
Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem.
Soc. 2005, 127, 18002.
´
M.; Alvarez-Ru´a, C. J. Am. Chem. Soc. 2004, 126, 470.
(11) For reviews of catalyses via rhodium(II) carbenoids, see: (a) Davies,
H. M. L.; Walji, A. M. In Modern Rhodium-Catalyzed Organic Reactions;
Evans, P. A., Tsuji, J., Eds.; Wiley-VCH: Weinheim, Germany, 2005; p
301. (b) Doyle, M. P. In Modern Rhodium-Catalyzed Organic Reactions;
Evans, P. A., Tsuji, J., Eds.; Wiley-VCH: Weinheim, Germany, 2005; p
341.
(12) For selected recent examples, see :(a) Matsuyama, N.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 3576. (b) Ito, J.; Kitase, M.;
Nishiyama, H. Organometallics 2007, 26, 6412. (c) Nishimura, T.; Guo,
X.-X.; Ohnishi, K.; Hayashi, T. AdV. Synth. Catal. 2007, 349, 2669. (d)
Katagiri, T.; Tsurugi, H.; Funayama, A.; Satoh, T.; Miura, M. Chem. Lett.
2007, 36, 830.
(9) Recent examples of the efficient synthesis of substituted dihydro-
pentalenes, see: (a) Gotoh, H.; Ogino, H.; Ishikawa, H.; Hayashi, Y.
Tetrahedron 2010, 66, 4894. (b) Hong, B.-C.; Shr, Y.-J.; Wu, J.-L.; Gupta,
A. K.; Lin, K.-J. Org. Lett. 2002, 4, 2249. (c) Ref 7.
Org. Lett., Vol. 12, No. 23, 2010
5597