JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
2 Liu, J. G.; Li, Z. X.; He, M. H.; Wang, F. S.; Yang, S. Y. In
Polyimides and Other High Temperature Polymers; Mittal, K.
L., Ed.; VSP BV: Utrecht, 2003; Vol. 2, pp 447–458.
bulky phosphorus-containing groups laterally attached to the
macromolecular chains.33 The percent crystallinity of the
polymers was determined by bisecting the experimental plot
into crystalline domain and amorphous domain by curve fit-
ting. The areas under the crystalline and amorphous domain
are determined computationally, and the percentage crystal-
linity was calculated. The percentage crystallinity varies
from 28 to 43%, for the studied polymers, depending slightly
upon aliphatic segment content in the polymer (Table 3).
The percentage crystallinity decreased by introducing equi-
molecular amounts of 3 and 1,6-hexanediol or 1,12-dodeca-
nediol, respectively, when compared with polymer 4a.
Decreasing the molar ratio of 1,12-dodecanediol in 4g
slightly increased the percentage crystallinity from 28 to
32% (4f vs. 4g, Table 3), illustrating that the molecular pack-
ing is disrupted by difference in the size of comonomer units
and also by random comonomer sequences.58 The polymer
4i that contains the smallest quantity of aromatic bisphenol
3 in the structural unit of the macromolecular chain exhib-
ited the highest value for the percentage crystallinity.
3 Leng, W. N.; Zhou, Y. M.; Xu, Q. H.; Liu, J. Z. Polymer 2001,
42, 9253–9259.
4 Liaw, D. J.; Chang, F. C.; Leung, M. K.; Chou, M. Y.; Muellen,
K. Macromolecules 2005, 38, 4024–4029.
5 Wang, L.; Zhao, Z.; Li, J.; Chen, C. Eur Polym J 2006, 42,
1266–1272.
6 Shang, Y.; Fan, L.; Yang, S.; Xie, X. Eur Polym J 2006, 42,
981–989.
7 Myung, B. Y.; Kim, J. J.; Yoon, T. H. J Polym Sci Part A:
Polym Chem 2002, 40, 4217–4227.
8 Liu, Y. L.; Hsu, C. Y.; Wu, C. S. J Appl Polym Sci 2003, 89,
791–796.
9 Xu, J. W.; Chng, M. L.; Chung, T. S.; He, C. B.; Wang, R. Poly-
mer 2003, 44, 4715–4721.
10 Wakita, J.; Sekino, H.; Sakai, K.; Urano, Y.; Ando, S. J Phys
Chem B 2009, 113, 15212–15224.
CONCLUSIONS
11 Wang, C. S.; Leu, T. S. Polymer 2000, 41, 3581–3591.
A series of main-chain LC PEIs bearing bulky phosphorus-
containing groups were synthesized by using various ali-
phatic diols, the mesogenic terephthaloyl-bis-(4-oxibenzoyl-
chloride), and a new LC phosphorus-containing monomer.
The chemical structures of the monomers and polymers
were characterized with FTIR and 1H NMR spectroscopies.
The liquid crystalline phases were confirmed by DSC and X-
ray diffraction experiments and were also compared with
the PLM observations. The samples 4a–4g exhibited nematic
phases upon heating and cooling, whereas the samples 4h
and 4i displayed both smectic and nematic phases. The mes-
omorphic transition temperatures of the synthesized poly-
mers decreased by increasing the number of methylene units
in the macromolecular chain (polymers 4b–4f). Also, the
mesomorphic transition temperatures decreased with the
increase of the aliphatic molar ratio in the polymer backbone
(polymers 4f–4i). Broad mesophase temperature ranges
were observed for these polymers, making them interesting
from practical point of view. The thermal properties and the
flame retardancy of the polymers were evaluated by means
of TGA, TGA–FTIR, and SEM. The TGA results showed that
5% weight loss temperatures were greater than 340 ꢀC for
all the polymers, and the residue at 700 ꢀC increased with
the increase of phosphorus-containing units in the macromo-
lecular system.
12 Eichstadt, A. E.; Ward, T. C.; Bagwell, M. D.; Farr, I. V.; Dun-
son, D. L.; McGrath, J. E. J Polym Sci Part B: Polym Phys 2002,
40, 1503–1512.
13 Madhra, M. K.; Sharma, M.; Banerjee, S. J Appl Polym Sci
2004, 93, 235–246.
14 Krishnan, P.; Santhana, G.; Veeramani, S. Polym Degrad
Stab 2003, 81, 225–232.
15 De Abajo, J.; De la Campa, J. G. In Handbook of Polymer
Synthesis, 2nd ed.; Kricheldorf, H. R.; Nuyken, O.; Swift, G.,
Eds.; Marcel Dekker: New York, 2005, p 575.
16 Kricheldorf, H. R.; Domschke, A.; Schwarz, G. Macromole-
cules 1991, 24, 1011–1016.
17 Kricheldorf, H. R. Adv Polym Sci 1999, 141, 83–188.
18 Kim, T. K.; Kim, S. O.; Chung, I. J. Polym Adv Technol 1997,
8, 305–318.
19 Reddy, C. R.; Lenz, R. W. J Polym Sci Part A: Polym Chem
1991, 29, 1015–1021.
20 Ignatious, F.; Lenz, R. W.; Kantor, S. W. Macromolecules
1994, 27, 5248–5257.
21 Senthill, S.; Kannan, P. J Polym Sci Part A: Polym Chem
2001, 39, 2396–2403.
22 Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H.; Lv, P.; Jie, G.
Polymer 2010, 51, 2435–2445.
This research was financially supported by European Social
Fund—‘‘Cristofor I. Simionescu’’ Postdoctoral Fellowship Pro-
gramme (ID POSDRU/89/1.5/S/55216) and Sectoral Opera-
tional Programme Human Resources Development 2007–2013.
23 Du, X. H.; Wang, Y. Z.; Chen, X. T. Polym Degrad Stab 2005,
88, 52–56.
24 Wang, C. S.; Lin, C. H.; Chen, C. Y. J Polym Sci Part A:
Polym Chem 1998, 36, 3051–3061.
25 Liu, Y. L.; Wu, C. S.; Hsu, K. Y.; Chang, T. C. J Polym Sci
REFERENCES AND NOTES
Part A: Polym Chem 2002, 40, 2329–2339.
1 Ghosh, M. K.; Mittal, K. L. Polyimides: Fundamentals and
26 Canadell, J.; Mantecon, A.; Cadiz, V. J Polym Sci Part A:
Applications; Marcel Dekker: New York, 1996; pp 7–48, 71–120.
Polym Chem 2007, 45, 1980–1992.
5402
WILEYONLINELIBRARY.COM/JOURNAL/JPOLA