extensively explored.4n,6 This presents an opportunity to
develop a highly desirable stereoselective system, that in
principle would provide an alternative synthetic technique
to the corresponding Aldol or Mannich-type reaction pro-
tocols.
As a continuing effort to develop solutions to complex
synthetic challenges, we herein describe a new approach to
the construction of a tertiary alcohol7 unit through organo-
catalytic intermolecular conjugate addition of oximes to
ꢀ-nitro-acrylates.8 This research describes the formation of
optically active R-oxylated ꢀ-nitro esters (15 examples,
91-98% ee), which are useful building blocks6b,9 for the
synthesis of ꢀ2,2-amino acids and oxazolidin-2-ones.
Pioneered by Jacobsen and co-workers4b in the Al(III)-
catalyzed highly enantioselective conjugate addition of
oximes to R,ꢀ-unsaturated imides, and later in the unprec-
edented organocatalytic hydroxylation of enals and nitroalk-
enes by Jørgensen and co-workers,4e,f oximes proved to be
a highly valuable class of “soft” oxygen nucleophiles. Due
to the planar character of an oxime which has minimal steric
hindrance, which we believe to be a key prerequisite for
successful conjugate addition reactions with crowded tri- or
tetrasubstituted electron-deficient alkenes.10 Initially, we
examined the reaction of ethyl glyoxylate oxime 1a, which
is an excellent Michael donor as shown by Jørgensen and
co-workers for the hydroxylation of aliphatic nitroalkenes
by thiourea catalysts,4f with ꢀ-nitroacrylate 2a in the presence
of 20 mol % of organocatalyst 4 (eq 1).
(4) (a) Sekino, E.; Kumamoto, T.; Tanaka, T.; Ikeda, T.; Ishikawa, T.
J. Org. Chem. 2004, 69, 2760. (b) Vanderwal, C. D.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 14724. (c) Kano, T.; Tanaka, Y.; Maruoka, K.
Tetrahedron 2007, 63, 8658. (d) Sunde´n, H.; Ibrahem, I.; Zhao, G.-L.;
Eriksson, L.; Co´rdova, A. Chem.sEur. J. 2007, 13, 574. (e) Bertelsen, S.;
Dine´r, P.; Johansen, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129,
1536. (f) Dine´r, P.; Nielsen, M.; Bertelsen, S.; Niess, B.; Jørgensen, K. A.
Chem. Commun. 2007, 3646. (g) Biddle, M. M.; Lin, M.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 3830. (h) Li, H.; Wang, J.; E-Nunu, T.; Zu,
L.; Jiang, W.; Wei, S.-H.; Wang, W. Chem. Commun. 2007, 507. (i) Wang,
L.-J.; Liu, X.-H.; Dong, Z.-H.; Fu, X.; Feng, X.-M. Angew. Chem., Int. Ed.
2008, 47, 8670. (j) Zu, L.-S.; Zhang, S.-L.; Xie, H.-X.; Wang, W. Org.
Lett. 2009, 11, 1627. (k) Reyes, E.; Talavera, G.; Vicario, J. L.; Badia, D.;
Carrillo, L. Angew. Chem., Int. Ed. 2009, 48, 5701. (l) Wang, H.-F.; Cui,
H.-F.; Chai, Z.; Li, P.; Zheng, C.-W.; Yang, Y.-Q.; Zhao, G. Chem.sEur.
J. 2009, 15, 13299. (m) Gu, Q.; Rong, Z.-Q.; Zheng, C.; You, S.-L. J. Am.
Chem. Soc. 2010, 132, 4056. (n) Matoba, K.; Kawai, Hiroyuki; Furukawa,
T.; Kusuda, A.; Tokunaga, E.; Nakamura, S.; Shiro, M.; Shibata, N. Angew.
Chem., Int. Ed. 2010, 49, 5762.
Although disappointed by the poor reaction outcome
with only a trace amount of the desired product, this
encouraged us to believe that this protocol should be
achieved if the nucleophilicity of the oxime could be
enhanced. Gratifyingly, by simply changing the oxime
from 1a to the relatively more nucleophilic p-methoxy-
benzaldehyde oxime 1b, we obtained the desired product
in 81% yield with 17% ee (Table 1, entry 1).11 Interest-
ingly, decreasing the catalyst loading greatly improved
the stereoselectivity of the reaction (entries 2 vs 1).
We then embarked on optimizing the reaction conditions.
For example, a solvent investigation revealed that nonploar
solvents were superior to polar solvents in terms of yields
and enantioselectivities (entries 1-10). Toluene was found
to be the best solvent (entry 2, 75% yield and 50% ee). After
screening a number of organocatalysts, cinchona alkaloids
5 and 6 bearing a C6′-hydroxy group developed by the Deng
group,12 were identified to be the best organocatalysts for
this conjugate addition.13 With 5 mol % 5 or 6, the reaction
(5) For selected reviews and examples on sulfa-Michael reactions, see:
(a) Wang, X.-F.; Hua, Q.-L.; Cheng, Y.; An, X.-L.; Yang, Q.-Q.; Chen,
J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49, 8379. (b) Hui, Y.-H.;
Jiang, J.; Wang, W.-T.; Chen, W.-L.; Cai, Y.-F.; Lin, L.-L.; Liu, X.-H.;
Feng, X.-M. Angew. Chem., Int. Ed. 2010, 49, 4290. (c) Liu, Y.; Sun, B.;
Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131, 418. (d)
Kimmel, K. L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131,
8754. (e) Wang, J.; Xie, H.-X.; Li, H.; Zu, L.-S.; Wang, W. Angew. Chem.,
Int. Ed. 2008, 47, 4177. (f) Enders, D.; Luttgen, K.; Narine, A. Synthesis
2007, 959. RAJIV(5) For recent phosphite addition reactions and reviews,
see: (g) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew, Chem., Int. Ed.
2010, 49, 153. (h) Wang, J.; Heikkinen, L. D.; Li, H.; Zu, L.; Jiang, W.;
Xie, H.; Wang, W. AdV. Synth. Catal. 2007, 349, 1052. (i) Terada, M. T.;
Ube, I. H. J. Am. Chem. Soc. 2007, 129, 14112. (j) Almasi, D.; Alonso,
D. A.; Najera, C. Tetrahedron: Asymmetry 2007, 18, 299. (k) Tsogoeva,
S. B. Eur. J. Org. Chem. 2007, 1701. (l) Vicario, J. L.; Badia, D.; Carrillo,
L. Synthesis 2007, 2065. For recent aza-Michael reactions and review, see:
(m) Roy, S. R.; Chakraborti, A. K. Org. Lett. 2010, 12, 3866. (n) Gogoi,
S.; Zhao, C.-G.; Ding, D.-R. Org. Lett. 2009, 11, 2249. (o) Lin, Q.-Y.;
Meloni, D.; Pan, Y.-C.; Xia, M.; Rodgers, J.; Shepard, S.; Li, M.; Galya,
L.; Metcalf, B.; Yue, T.-Y.; Liu, P.-L.; Zhou, J.-C. Org. Lett. 2009, 11,
1999. (p) Enders, D.; Wang, C.; Liebich, J. X. Chem.sEur. J. 2009, 15,
11058.
(9) (a) Liu, T.-Y.; Li, R.; Chai, Q.; Long, J.; Li, B.-J.; Wu, Y.; Ding,
L.-S.; Chen, Y.-C. Chem.sEur. J. 2006, 13, 319 For reviews, see. (b)
Juaristi, E.; Soloshonok, V. EnantioselectiVe Synthesis of ꢀ-Amino Acids,
2nd ed.; Wiley-VCH: New York, 2005. (c) Abele, S.; Seebach, D. Eur. J.
Org. Chem. 2000, 1.
(6) For intermolecular conjugate addition of heteroatom-based nucleo-
philes with ꢀ,ꢀ-disubstituted R,ꢀ-unsaturated systems see: (a) Emori, E.;
Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043. (b)
Lu, H.-H.; Zhang, F.-G.; Meng, X.-G.; Duan, S.-W.; Xiao, W.-J. Org. Lett.
2009, 11, 3946. Other oxygen-nucleopiles take part in intermolecular
conjugate addition, for examples, see: (c) Seagers, W. J.; Elving, P. J. J. Am.
Chem. Soc. 1949, 71, 2947. (d) Fuer, H.; Markofsky, S. J. Org. Chem.
1964, 29, 929. (e) Duffy, J. L.; Kurth, J. A.; Kurth, M. J. Tetrahedron Lett.
1993, 34, 1259. (f) Dulcere, J. P.; Dumez, E. Chem. Commun. 1997, 971.
(g) Adderley, N. J.; Buchanan, D. J.; Dixon, D. J.; Laine, D. I. Angew.
Chem., Int. Ed. 2003, 42, 4241. (h) Yi, C.-S.; Yun, S.-S.; He, Z.; Guzei,
I. A. Organometallics 2003, 22, 3031. (i) Buchanan, D. J.; Dixon, D. J.
Org. Lett. 2004, 6, 1357. (j) Xiong, X.; Ovens, C.; Pilling, A. W.; Ward,
J. W.; Dixon, D. J. Org. Lett. 2008, 10, 565.
(10) Quite recently, Scheidt and coworkers developed an elegant
N-heterocyclic carbene-catalyzed conjugate additions of alcohols to enones,
see: Phillips, E. M.; Riedrich, M.; Scheidt, K. A. J. Am. Chem. Soc. 2010,
132, 13179.
(11) In our hands, the conjugate addition adducts are stable and could
be directly subjected to silical gel chromatography. We believe that the
electron-withdrawing ester group has a stabilizing effect as reversible
conjugate addition was observed in the case of simple nitroalkenes by
Jørgensen and coworkers, see ref 4f.
(12) (a) Li, H.-M.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc.
2004, 126, 9906. (b) Li, H.-M.; Wang, Y.; Tang, L.; Wu, F.-H.; Liu, X.-F.;
Guo, C.-Y.; Foxman, B.-M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44,
105. (c) Liu, X.-F.; Li, H.-M.; Deng, L. Org. Lett. 2005, 7, 167. (d) Li,
H.-M.; Wang, B.-M.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732. See
also: (e) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am.
Chem. Soc. 1999, 121, 10219. For reviews on cinchona alkaloid catalysis,
see: (f) Chen, Y.-G.; McDaid, P.; Deng, L. Chem. ReV. 2003, 103, 2965.
(g) Tian, S.-K.; Chen, Y.-G.; Chen, J.-F.; Tang, L.; Mcdaid, P.; Deng, L.
Acc, Chem, Res. 2004, 37, 621. (h) Chen, Y.-C. Synlett 2008, 1919.
(13) Please view the Supporting Information for details.
(7) For recent reviews on asymmetric synthesis of tertiary alcohols, see:
(a) Hatano, M.; Ishihara, K. Synthesis 2008, 1647. (b) Riant, O.; Hannedouche,
J. Org. Biomol. Chem. 2007, 5, 873. (c) Cozzi, P. G.; Hilgraf, R.;
Zimmermann, N. Eur. J. Org. Chem. 2007, 5969.
(8) Reviews of asymmetric organocatalytic 1,4-conjugate additions: (a)
Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701. (b) Almasi, D.; Alonso,
D. A.; Na´jera, C. Tetrahedron: Asymmetry 2007, 18, 299.
Org. Lett., Vol. 12, No. 24, 2010
5637