7280
Z. Xin et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7277–7280
Table 3
Single-dose PK parameters of 6q
Species
Dose (mg/kg)
AUC/dose ng à h à kg/(ml à mg)
Cmax (ng/ml)
CL (ml/min/kg)
T1/2 (h)
Rat (n = 2)
2
0.5
5495
28712
—
1125
2.5
0.6
9.6
10.1
Doga (n = 2)
a
From enantiomer 2.
O
desirable pharmacokinetic properties in mice, rats and dogs. This
compound also exhibits good brain penetration and a robust PD re-
sponse with selective lowering of brain Ab42 levels in mice and
rats. Furthermore, compound 6q was shown to be low risk in
in vitro hERG and CYP inhibition assessments, and is thus suitable
for further evaluation.
O
O
H
O
OH
OMe
OMe
OMe
OH
7
e, f
d
b, c
t-Bu
t-Bu
CF3
N
CF3
5a
N
H
CF3
O
O
H
a
9
8
O
O
O
Acknowledgments
O
OMe
OH
OMe
OMe
OMe
OH
h
b, c
g
The authors thank the following Biogen Idec personnel: Harriet
Rivera for compound management, Xiaoping Hronowski for HRMS
analysis, the DMPK group for permeability, metabolic stability and
PK studies, and the Neuropharmacology group for in vivo studies.
O
HO
CF3
12
O
CF3
11
10
i
O
O
O
Supplementary data
OH
OMe
OMe
Supplementary data associated with this article can be found, in
f
j
N
CF3
N
CF3
I
CF3
References and notes
F3C
F3C
6q
14
13
1. Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H. M. Alzheimer’s
Dement. 2007, 3, 186.
2. Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
3. van Es, J. H.; van Gijn, M. E.; Riccio, O.; van den Born, M.; Vooijs, M.; Begthel, H.;
Cozijnsen, M.; Robine, S.; Winton, D. J.; Radtke, F.; Clevers, H. Nature 2005, 435,
959.
4. Weggen, S.; Eriksen, J. L.; Das, P.; Sagi, S. A.; Wang, R.; Pietrzik, C. U.; Findlay, K.
A.; Smith, T. E.; Murphy, M. P.; Bulter, T.; Kang, D. E.; Marquez-Sterling, N.;
Golde, T. E.; Koo, E. H. Nature 2001, 414, 212.
Scheme 1. Conditions and reagents: (a) MgCl2, Et3N, paraformaldehyde, MeCN,
reflux, 9%; (b) Tf2O, pyridine, CH2Cl2, 78–97%; (c) 4-CF3-phenylboronic acid,
(Ph3P)4Pd, 77–90%; (d) 4-t-butylcyclohexylamine, NaBH(OAc)3, 45%; (e) isovaleral-
dehyde, NaBH(OAc)3, 100%; (f) NaOH, 80–100%; (g) 3,3-dimethylbutanoic acid,
EDCI, Et3N, CH2Cl2; BF3ÁEt2O, 25%; (h) BH3 in THF, 0 °C, 40%; (i) NaI, BF3ÁEt2O,
CH2Cl2; (j) 4-CF3-piperidine hydrochloride, Et3N, CH2Cl2, 40% for two steps.
5. Lim, G. P.; Yang, F.; Chu, T.; Chen, P.; Beech, W.; Teter, B.; Tran, T.; Ubeda, O.;
Ashe, K. H.; Frautschy, S. A.; Cole, G. M. J. Neurosci. 2000, 20, 5709; Ing, R.;
Yoshida, M.; Mariano, P. S. J. Org. Chem. 1996, 61, 4439.
6. Eriksen, J. L.; Sagi, S. A.; Smith, T. E.; Weggen, S.; Das, P.; McLendon, D. C.; Ozols,
V. V.; Jessing, K. W.; Zavitz, K. H.; Koo, E. H.; Golde, T. E. J. Clin. Invest. 2003, 112,
440.
(30%) was evaluated for Notch activity by immunoblot analysis of
endogenous HES1, a Notch intracellular domain (NICD) regulated
transcription product. This enantiomer of 6q showed no inhibitory
activity at 10 lM.
7. Imbimbo, B. J. Alzheimers Dis. 2009, 17, 757.
The syntheses of 5a and 6q are outlined in Scheme 1. Formyla-
tion of methyl 2-(3-hydroxyphenyl)acetate with paraformalde-
hyde in the presence of magnesium chloride provided a low yield
of salicylaldehyde 7. The phenol 7 was transformed to a triflate
intermediate, which was converted to 8 via a Suzuki coupling.
Reductive amination with an excess of cis/trans-4-tert-butylcycloh-
exanamine generated amine 9 as a pure trans-isomer. A second
reductive amination with isovaleraldehyde was followed by hydro-
lysis with NaOH to provide compound 5a in excellent yield.
Synthesis of compound 6q was accomplished via similar proce-
dures starting with acylation of 2-(3-hydroxy-phenyl)acetate to
yield the arylketone 10. Triflation and a Suzuki coupling afforded
key intermediate 11. A three step sequence that involved reduction
to 12, iodination to 13 and displacement to install the amine moi-
ety of 14 was performed. The direct reductive amination of 11 did
not proceed well. Treatment of ester 14 with NaOH proceeded
smoothly to afford the corresponding acid 6q.
8. Peretto, I.; Radaelli, S.; Parini, C.; Zandi, M.; Raveglia, L. F.; Dondio, G.;
Fontanella, L.; Misiano, P.; Bigogno, C.; Rizzi, A.; Riccardi, B.; Biscaioli, M.;
Marchetti, S.; Puccini, P.; Catinella, S.; Rondelli, I.; Cenacchi, V.; Bolzoni, P. T.;
Caruso, P.; Villetti, G.; Facchinetti, F.; Giudice, E. D.; Moretto, N.; Imbimbo, B. P.
J. Med. Chem. 2005, 48, 5705.
9. Evaluation of safety & tolerability of multiple dose regimens of CHF 5074 and
exploration of effects on potential markers of clinical efficacy in patients with
10. Stanton, M. G.; Hubbs, J.; Sloman, D.; Hamblett, C.; Andrade, P.; Angagaw, M.;
Bi, G.; Black, R. M.; Crispino, Jamie.; Cruz, J. C.; Fan, E.; Farris, G.; Hughes, B. L.;
Kenific, C. M.; Middleton, R. E.; Nikov, G.; Sajonz, P.; Shah, S.; Shomer, N.;
Szewczak, A. A.; Tanga, F.; Tudge, M. T.; Shearman, M.; Munoz, B. Bioorg. Med.
Chem. Lett. 2010, 20, 755.
11. Hall, A.; Elliott, R. L.; Giblin, G. M. P.; Hussain, I.; Musgrave, J.; Naylor, A.; Sasse,
R.; Smith, B. Bioorg. Med. Chem. Lett. 2010, 20, 1306.
12. Oehlrich, D.; Berthelot, D. J.-C.; Gijsen, H. J. M. J. Med. Chem. 2011, 54, 669.
13. Pattersson, M.; Kauffman, G. W.; am Ende, C. W.; Patel, N. C.; Stiff, C.; Tran, T.
P.; Johnson, D. S. Expert Opin. Ther. Patents 2009, 21, 205.
14. Peng, H.; Cuervo, J.H.; Ishchenko, A.; Kumaravel, G.; Lee, W.-C.; Lugovskoy, A.;
Talreja, T.; Taveras, A. G.; Xin, Z. WO2010138901, 2010.
15. Peng, H.; Talreja, T.; Xin, Z.; Cuervo, J. H.; Kumaravel, G.; Humora, M. J.; Xu, L.;
Rohde, E.; Gan, L.; Jung, M.; Shackett, M.; Chollate, S.; Dunah, A. W.; Snodgrass-
belt, P. A.; Arnold, H. M.; Taveras, A. G.; Rhodes, K. J.; Scannevin, R. H. Med. Lett.
2011, 2, 786.
In summary, we have discovered a novel series of 4-aminophe-
nylacetic acids as
c-secretase modulators through a scaffold design
approach. This has culminated in compound 6q, which has