Article
J. Agric. Food Chem., Vol. 58, No. 24, 2010 12821
heat-labile enterotoxin by modular structure-based design. J. Am.
Chem. Soc. 2000, 122, 2663-2664.
terase and serotonin transporter as potential agents for Alzheimer’s
disease. Bioorg. Med. Chem. 2003, 11, 1935-1955.
(7) Kitov, P. I.; Sadowska, J. M.; Mulvey, G.; Armstrong, G. D.; Ling,
H.; Pannu, N. S.; Read, R. J.; Bundle, D. R. Shiga-like toxins are
neutralized by tailored multivalent carbohydrate ligands. Nature
2000, 403, 669-672.
(8) LeBoulluec, K. L.; Mattson, R. J.; Mahle, C. D.; McGovern, R. T.;
Nowak, H. P.; Gentile, A. J. Bivalent indoles exhibiting serotonergic
binding affinity. Bioorg. Med. Chem. Lett. 1995, 5, 123-126.
(9) Lee, R. T.; Lee, Y. C. Affinity enhancement by multivalent
lectin-carbohydrate interaction. Glycoconjugate J. 2000, 17,
543-551.
(10) Pang, Y. P.; Quiram, P.; Jelacic, T.; Hong, F.; Brimijoin, S. Highly
potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of
acetylcholinesterase: steps toward novel drugs for treating Alzheimer’s
disease. J. Biol. Chem. 1996, 271, 23646-23649.
(11) Ahmad, M.; Arif, M. I.; Ahmad, M. Occurrence of insecticide
resistance in field populations of Spodoptera litura (Lepidoptera:
Noctuidae) in Pakistan. Crop Prot. 2007, 26, 809-817.
(12) Ahmad, M.; McCaffery, A. R. Resistance to insecticides in a
(20) Pang, Y. P.; Quiram, P.; Jelacic, T.; Hong, F.; Brimijoin, S. Highly
potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of
acetylcholinesterase: steps toward novel drugs for treating Alzheimer’s
disease. J. Biol. Chem. 1996, 271, 23646-23649.
(21) Carlier, P. R.; Du, D. M.; Han, Y. F.; Liu, J.; Perola, E.; Williams,
I. D.; Pang, Y. P. Dimerization of an inactive fragment of huperzine
A produces a drug with twice the potency of natural product. Angew.
Chem. Int. Ed. Engl. 2000, 39, 1775-1777.
(22) Belluti, F.; Rampa, A.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.;
Andrisano, V.; Cavalli, A.; Recanatini, M.; Valenti, P. Cholinesterase
inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-
induced β-amyloid aggregation. J. Med. Chem. 2005, 48, 4444-
4456.
(23) He, X. C.; Feng, S.; Wang, Z. F.; Shi, Y. F.; Zheng, S. X.; Xia, Y.;
Jiang, H. L.; Tang, X. C.; Bai, D. L. Study on dual-site inhibitors of
acetylcholinesterase: highly potent derivatives of bis- and bifunc-
tional huperzine B. Bioorg. Med. Chem. 2007, 15, 1394-1408.
(24) Feng, S.; Wang, Z. F.; He, X. C.; Zheng, S. X.; Xia, Y.; Jiang, H. L.;
Tang, X. C.; Bai, D. L. Bis-huperzine B: highly potent and selective
acetylcholinesterase inhibitors. J. Med. Chem. 2005, 48, 655-657.
(25) Kryge, G.; Silman, I.; Sussman, J. L. Structure of acetylcholinester-
ase complexed with E2020 (Aricept): implications for the design of
new anti-Alzheimer drugs. Structure 1999, 7, 297-307.
€
Thailand strain of Heliothis armigera (Hubner) (Lepidoptera:
Noctuidae). J. Econ. Entomol. 1988, 81, 45-48.
(13) Torres-Vila, L. M.; Rodrıguez-Molina, M. C.; Lacasa-Plasencia, A.;
´
Bielza-Lino, P. Insecticide resistance of Helicoverpa armigera to
endosulfan,carbamates and organophosphates: the Spanish case.
Crop Prot. 2002, 21, 1003-1013.
(26) Zhao, Q. F.; Yang, G. Q.; Mei, X. D.; Ning, J. Novel acetylcholi-
nesterase inhibitors: synthesis and structure-activity relationships
of phthalimide alkyloxylphenyl N,N-dimethylcarbamate derivatives.
Pestic. Biochem. Physiol. 2009, 95, 131-134.
(14) Wu, Y. D.; Shen, J. L.; Tan, F. J.; You, Z. P. Resistance monitoring
of Helicoverpa armigera in Yanggu County of Shandong Province.
J. Nanjing Agric. Univ. 1995, 18, 48-53.
(15) Corbett, J. R.; Wright, K.; Baillie, A. C. The Biochemical Mode of
Action of Pesticides; Academic Press: London, U.K., 1984.
(16) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.;
Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from
Torpedo californica: a prototypic acetylcholine-binding protein.
Science 1991, 253, 872-879.
(17) Savini, L.; Gaeta, A.; Fattorusso, C.; Catalanotti, B.; Campiani, G.;
Chiasserini, L.; Pellerano, C.; Novellino, E.; McKissic, D.; Saxena,
A. Specific targeting of acetylcholinesterase and butyrylcholinester-
ase recognition sites. Rational design of novel, selective, and highly
potent cholinesterase inhibitors. J. Med. Chem. 2003, 46, 1-4.
(18) Sheng, R.; Lin, X.; Li, J. Y.; Jiang, Y. K.; Shang, Z. C.; Hu, Y. Z.
Design, synthesis, and evaluation of 2-phenoxy-indan-1-one deriva-
tives as acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett.
2005, 15, 3834-3837.
(27) Zhao, Q. F.; Yang, G. Q.; Mei, X. D.; Ning, J. Design of novel
carbamate acetylcholinesterase inhibitors based on the multiple
binding sites of acetylcholinesterase. J. Pestic. Sci. 2008, 33,
371-375.
(28) Metcalf, R. L.; Fukuto, T. R. Effects of chemical structure on
intoxication and detoxication of phenyl N-methylcarbamates.
J. Agric. Food Chem. 1965, 13, 220-231.
(29) Fukuto, T. R.; Fanmy, M. A.; Metcalf, R. L. Alkaline hydrolysis,
anti-cholinesterase, and insecticidal properties of some nitro-substituted
phenyl carbamate. J. Agric. Food Chem. 1967, 15, 273-281.
(30) Metcalf, R. L.; Fukuto, T. R. Some effects of molecular structure
upon anticholinesterase, insecticidal activity of substituted phenyl
N-methylcarbamates. J. Agric. Food Chem. 1967, 15, 1022-1029.
Received for review August 22, 2010. Revised manuscript received
November 2, 2010. Accepted November 8, 2010. This work was
financially supported by the National Basic Research Program of
China (No. 2010CB126106 and No. 2006CB101907).
(19) Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.; Yamada,
N.; Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.;
Aoyagi, A.; Abe, Y.; Kaneko, T.; Kogenet, H. Design, synthesis and
structure-activity relationships of dual inhibitors of acetylcholines-