10030 Macromolecules, Vol. 43, No. 23, 2010
Lin and Gitsov
Table 7. Total Drug Loading and Equilibrium Release from Hydrogels with Different Macromolecular Architecture
first portion release second portion release
amount (mg/g dry gel) amount (mg/g dry gel) % release
hydrogela
drug bonded (mg/g dry gel)
% release
JEFF-HPPCMSt2-Ib
JEFF-HPPCMSt2-Na
JEFF-HPPCMSt2-Py
JEFF-LPPCMSt2-Ib
JEFF-LPPCMSt2-Na
JEFF-LPPCMSt2-Py
33.3
33.3
25.3
33.3
19.2
33.3
8.01
7.63
0.34
3.20
2.10
0.23
24.1
22.9
1.3
9.6
11.0
0.7
4.48
4.41
0.27
2.02
1.10
0.12
13.5
13.2
1.0
6.1
5.8
0.4
a The numbers signify the Jeffamine to PPCMSt ratio.
(Figure 10) in the modified conetworks, which prevents the
efficient access of the swelling medium to all hydrolyzable
attachment sites in the hydrogel matrix.
Broniatowski, S. Macromol. Biosci. 2010, 10, 369–377. (c) Patrickios,
C. S. Macromol. Symp. 2010, 291-292, 1–11.
€
(10) Erdodi, G.; Kennedy, J. P. J. Polym. Sci., Part A: Polym. Chem.
2007, 45, 295–307.
The results obtained show that the release process includes
several interrelated phenomena: (1) penetration of the me-
dium into the network matrix and swelling, affected by the
hydrophilic/hydrophobic balance of the hydrogel, the cross-
linking density and the morphology (pore structure and
organization); (2) hydrolysis of the ester linkages (only the
deattached substances can be released under suitable con-
ditions); (3) dissolution of the cleaved molecules in the
surrounding aqueous media (i.e., the amount of drugs that
can be spectroscopically detected outside the gels); (4) the
residual interaction of the detached compounds with their
original carriers (hydrophobic/hydrophobic or π-π inter-
actions) and (5) diffusion process through the swollen gel as a
consequence of the preceding events (1-4).
€
ꢀ
(11) Erdodi, G.; Ivan, B. Chem. Mater. 2004, 16, 959–962.
ꢀ
€
(12) Ivan, B.; Haraszti, M.; Erdodi, G.; Scherble, J.; Thomann, R.;
Mulhaupt, R. Macromol. Symp. 2005, 227, 264–274.
(13) Scherble, J.; Thomann, R.; Ivan, B.; Mulhaupt, R. J. Polym. Sci.,
€
ꢀ
€
Part B: Polym. Phys. 2001, 39, 1429–1436.
(14) (a) Tiller, J. C.; Sprich, C.; Hartmann, L. J. Controlled Release
2005, 103, 355–367. (b) Bruns, N.; Hanko, M.; Dech, S.; Ladisch, R.;
Tobis, J.; Tiller, J. C. Macromol. Symp. 2010, 291-292, 293–301.
(15) (a) Groenewolt, M.; Brezesinski, T.; Schlaad, H.; Antonietti, M.;
ꢀ
Groh, P. W.; Ivan, B. Adv. Mater. 2005, 17, 1158–1162. (b) Kali, G.;
Georgiou, T. K.; Ivan, B.; Patrickios, C. S.; Loizou, E.; Thomann, Y.;
ꢀ
Tiller, J. C. Langmuir 2007, 23, 10746–10755. (c) Georgiou, T. K.;
Patrickios, C. S. Biomacromolecules 2008, 9, 574–582. (d) Kafouris,
D.; Gradzielski, M.; Patrickios, C. S. Macromolecules 2009, 42, 2972–
2980. (e) Rikkou, M. D.; Loizou, E.; Patrickios, C.; Porcar, L. Eur.
Polym. J. 2010, 46, 441–449.
(16) For some current reviews on dendrimers see: (a) Hourani, R.;
Kakkar, A. Macromol. Rapid Commun. 2010, 31, 947–974. (b) Franc,
G.; Kakkar, A. K. Chem. Soc. Rev. 2010, 39, 1536–1544. (c) Menjoge,
A. R.; Kannan, R. M.; Tomalia, D. A. Drug Disc. Today 2010, 15, 171–
185. (d) Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Imam,
M. R.; Percec, V. Chem. Rev. 2009, 109, 6275–6540. (e) Samad, A.;
Alam, M. I.; Saxena, K. Curr. Pharm. Des. 2009, 15, 2958–2969.
(17) (a) Gitsov, I.; Lys, T.; Zhu, C. Polym. Mater. Sci. Eng. 2000, 82, 328–
329. (b) Gitsov, I.; Zhu, C. Macromolecules 2002,35, 8418–8427. (c) Gitsov,
I.; Lys, T.; Zhu, C. In Polymer Gels. Fundamentals and Applications,
Bohidar, H. B., Dubin, P., Osada, Y., Eds., ACS Symposium Series Vol. 833,
American Chemical Society: Washington, DC, 2002; pp 218-232.
(18) (a) Gitsov, I.; Zhu, C. J. Am. Chem. Soc. 2003, 125, 11228–11234.
(b) Zhu, C.; Hard, C.; Lin, C.; Gitsov, I. J. Polym. Sci., Part A: Polym.
Chem. 2005, 43, 4017–4029.
(19) (a) Tanghe, L. M.; Goethals, E. J.; Du Prez, F. Polym. Int. 2003, 52,
191–197. (b) Altin, H.; Kosif, I.; Sanyal, R. Macromolecules 2010, 43,
3801–3808.
(20) For some illustrative reviews on hyperbranched polymers see:
(a) Voit, B. I.; Lederer, A. Chem. Rev. 2009, 109, 5924–5973.
(b) Hobzova, R.; Peter, J.; Sysel, P. Chem. Listy 2008, 102, 906–913.
(c) Haussler, M.; Tang, B. Z. Adv. Polym. Sci. 2007, 209, 1–58.
(d) Seiler, M. Fluid Phase Equilib. 2006, 241, 155–174.
Conclusions
New monomers with attached model compounds (drugs and
fluorescent marker) are successfully synthesized and incorpo-
rated into copolymers with p-(chloromethyl)styrene. The new
copolymers are formed with controllable molecular weight and
chemical compositions and are used for the preparation of new
amphiphilic conetworks with PEG and Jeffamine. The incor-
poration of macromolecules with different types of architecture
into the hydrogels has a pronounced effect on their degree of
swelling, morphology, and the diffusion processes into and out of
the cross-linked systems. The hydrogels, which include different
amounts of bonded model substances (ibuprofen, naproxen and
pyrenecarboxylic acid), are able to release them in aqueous media
under basic conditions. The multiple-step release process depends
on the hydrolysis of ester linkage, the microstructure of hydro-
gels, the physical properties of the attached compounds, as well as
their interaction with the surrounding conetwork matrix.
Acknowledgment. The authors wish to thank Dr. Y. Yuan
(SUNY ESF) for her assistance with the FT-IR analyses. Partial
funding of this research by The National Science Foundation
(CBET-0853454) and US Department of Agriculture (McIntire-
Stennis Award to I.G.) is gratefully acknowledged.
(21) Gan, D.; Mueller, A.; Wooley, K. L. J. Polym. Sci., Part A: Polym.
Chem. 2003, 41, 3531–3540.
(22) Gudipati, C. S.; Finlay, J. A.; Callow, J. A.; Callow, M. E.; Wooley,
K. L. Langmuir 2005, 21, 3044–3053.
(23) Gudipati, C. S.; Greenlief, M.; Johnson, J. A.; Prayongpan, P.;
Wooley,K.L.J. Polym. Sci., Part A: Polym. Chem. 2004,42, 6193–6208.
(24) (a) Bartels, J. W.; Cheng, C.; Powell, K. T.; Xu, J.; Wooley, K. L.
Macromol. Chem. Phys. 2007, 208, 1676–1687. (b) Ohashi, R.;
Bartels, J. W.; Xu, J. Q.; Wooley, K. L.; Schaefer, J. Adv. Funct.
Mater. 2009, 19, 3404–3410.
References and Notes
ꢀ
(1) Liu, M.; Kono, K.; Frechet, J. M. J. J. Controlled Release 2000, 65,
121–131.
(2) Gupta, P.; Vermani, K.; Grag, S. Drug Disc. Today 2002, 7, 569–579.
(3) Greewald, R. B.; Choe, Y. H.; McGuire, J.; Conover, C. D. Adv.
Drug Delivery Rev. 2003, 55, 217–250.
(25) Lin, C.; Gitsov, I. Macromolecules 2010, 43, 3256–3267.
ꢀ
(26) Weimer, M. W.; Frechet, J. M. J.; Gitsov, I. J. Polym. Sci., Part A:
(4) Allen, T. M.; Cullis, P. R. Science 2004, 303, 1818–1822.
(5) Brigger, I.; Dubernet, C.; Couvreur, P. Adv. Drug Delivery Rev.
2002, 54, 631–651.
Polym. Chem. 1998, 36, 955–970.
(27) (a) Merill, E. W.; Dennison, K. A.; Sung, C. Biomaterials 1993, 14,
1117–1126. (b) Gitsov, I.; Lambrych, K. R.; Remnant, V. A.; Pracitto, R.
J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2711–2727.
(c) Hoffman, A. S. Adv. Drug Delivery Rev. 2002, 54, 3–12.
(28) (a) Gitsov, I.; Todorova, O. G. J. Appl. Polym. Sci. 1992, 46, 1631–
1638. (b) Todorova, O.; Gitsov, I.; Sinigersky, V. Polym. Bull. 1986, 15,
511–515.
ꢀ
(6) Bruns, N.; Scherble, J.; Hartmann, L.; Thomann, R.; Ivan, B.;
€
Mulhaupt, R.; Tiller, J. C. Macromolecules 2005, 38, 2431–2438.
(7) Bruns, N.; Tiller, J. C. Macromolecules 2006, 39, 4386–4394.
ꢀ
€
€
(8) Domjan, A.; Erdodi, G.; Wilhelm, M.; Neidhofer, M.; Landfester,
ꢀ
K.; Ivan, B.; Spiess, H. W. Macromolecules 2003, 36, 9107–9114.
€
(9) (a) Erdodi, G.; Kennedy, J. P. Prog. Polym. Sci. 2006, 31, 1–18.
(29) Ehrbar, M.; Metters, A.; Zammaretti, P.; Hubbell, J. A.; Zisch,
A. H. J. Contr. Rel. 2005, 101, 93–109.
€
(b) Kang, J.; Erdodi, G.; Kennedy, J. P.; Chou, H.; Lu, L. N.; Grundfest-